Abstract

We report on optical properties of coupled three-dimensional (3D) Ge quantum dot crystals (QDCs). With increasing the vertical periodic number of the QDCs, the photoluminescence (PL) spectral linewidth decreased exponentially, and so did the peak energy blueshift caused by increasing excitation power, which are attributed to the electronic coupling and thus the formation of miniband. In the PL spectra, the relative intensity of the transverse-optical (TO) phonon replica also decreases with increasing the vertical periodic number, which is attributed to the increased Brillouin-zone folding effect in vertical direction and therewith the relaxation of indirect transition nature of exciton recombination. Besides, the optical reflectivity at the interband transition energy was much more reduced for the QDCs than for the in-plane disordered QDs grown with the same parameters, indicating a higher interband absorption of the QDCs due to the miniband formation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
    [CrossRef]
  2. M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
    [CrossRef]
  3. R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
    [CrossRef] [PubMed]
  4. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
    [CrossRef] [PubMed]
  5. H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
    [CrossRef] [PubMed]
  6. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
    [CrossRef] [PubMed]
  7. Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
    [CrossRef]
  8. A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003).
    [CrossRef]
  9. H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
    [CrossRef]
  10. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
    [CrossRef] [PubMed]
  11. S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
    [CrossRef]
  12. T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
    [CrossRef]
  13. D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
    [CrossRef]
  14. S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
    [CrossRef]
  15. D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
    [CrossRef]
  16. O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001).
    [CrossRef]
  17. O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002).
    [CrossRef]
  18. Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004).
    [CrossRef]
  19. Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
    [CrossRef]
  20. E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
    [CrossRef]
  21. Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
    [CrossRef]
  22. C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
    [CrossRef]
  23. J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
    [CrossRef]
  24. M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
    [CrossRef]
  25. Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
    [CrossRef] [PubMed]
  26. C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
    [CrossRef]
  27. O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
    [CrossRef]
  28. M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
    [CrossRef]
  29. Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
    [CrossRef]
  30. A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
    [CrossRef] [PubMed]

2013 (1)

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

2012 (1)

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

2011 (3)

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

2010 (3)

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

2008 (3)

A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
[CrossRef]

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

2007 (4)

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

2006 (2)

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

2005 (1)

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004).
[CrossRef]

2003 (1)

A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003).
[CrossRef]

2002 (2)

O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002).
[CrossRef]

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

2001 (5)

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001).
[CrossRef]

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

2000 (2)

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
[CrossRef]

1996 (1)

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

Abstreiter, G.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Akahane, K.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Amano, T.

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

Auzelyte, V.

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

Balandin, A. A.

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001).
[CrossRef]

Bauer, G.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004).
[CrossRef]

Bayer, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Beirne, G. J.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

Bergmair, I.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Bichler, M.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Birner, S.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Bischoff, J. L.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Bloshkin, A.

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

Bloshsin, A. A.

A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
[CrossRef]

Brehm, M.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Carceller, J. E.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Carles, R.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Cazayous, M.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Chen, P. X.

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Chen, Y. W.

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Cho, H. Y.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Choia, S. H.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Clark, E. C.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Dais, C.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Dashiell, M. W.

M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
[CrossRef]

Denker, U.

M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
[CrossRef]

Dentel, D.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Donegá, C.

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

Dvurechenskii, A.

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

Dvurechenskii, A. V.

A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
[CrossRef]

Eberl, K.

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
[CrossRef]

Ekinci, Y.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Fafard, S.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Fan, Y. L.

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Fedoseyev, A. I.

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

Finley, J. J.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Forchel, A.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Fromherz, T.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Gomez-Campos, F. M.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Groenen, J.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Grützmacher, D.

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

Grüuzmacher, D.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Grüzmacher, D.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Grydlik, M.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Hackl, F.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Harris, J. S.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

Hawrylak, P.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Hermannstädter, C.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

Hinzer, K.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Holý, V.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Jiang, Z. M.

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Jimenez-Tejada, J. A.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Jin, G.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Kawabe, M.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Kim, M. C.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Kim, S.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Koole, R.

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

Korkusinski, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Krenner, H. J.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Kress, A.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Lan, S.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Lausecker, E.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Lazarenkova, O. L.

A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001).
[CrossRef]

Lechner, R. T.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Liao, X. Z.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Liljeroth, P.

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

Liu, J. L.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Lopez-Villanueva, J. A.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Lu, F.

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Luo, Y. H.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Luque-Rodriguez, A.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Lv, Q.

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Ma, Y. J.

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Manoharan, M.

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

Marshall, A. F.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

Meijerink, A.

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

Michler, P.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

Mizuta, H.

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

Mlayah, A.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Mori, M.

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

Mühlberger, M.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Müller, E.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Müssler, G.

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

Nie, T. X.

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Nika, D. L.

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

Niki, S.

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

Nikiforov, A.

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

Nishikawa, S.

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Nishimura, T.

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Oda, S.

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

Okada, Y.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Pan, B. Y.

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Park, C. J.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Pokatilov, E. P.

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

Rastelli, A.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

Rau, Y.

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
[CrossRef]

Rodriguez-Bolivar, S.

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

Sabathil, M.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Schäffler, F.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

Schmidt, O. G.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
[CrossRef]

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
[CrossRef]

Schuh, D.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Shao, Q.

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

Shi, J. W.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Sigg, H.

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Solak, H. H.

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Solomon, G. S.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

Song, H.

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Song, H. Z.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

Stangl, J.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Stern, O.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Sugaya, T.

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

Sun, C. K.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Sun, J. H.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Trezza, J. A.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

Tsuchiya, Y.

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

Turowski, M.

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

Vanmaekelbergh, D.

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

Wada, O.

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

Wan, J.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Wang, K. L.

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Wang, L.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

Wasilewski, Z. R.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Wen, Y. C.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Wintersberger, E.

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Wu, T. T.

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Wu, Y. Q.

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Xu, H. Z.

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

Yakimov, A.

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

Yakimov, A. I.

A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
[CrossRef]

Yang, W. C.

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Yang, X. J.

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Zhong, Z.

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004).
[CrossRef]

Zhou, T.

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

Zou, J.

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

Zwick, A.

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

Appl. Phys. Lett. (11)

A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008).
[CrossRef]

M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008).
[CrossRef]

Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007).
[CrossRef]

A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003).
[CrossRef]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010).
[CrossRef]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004).
[CrossRef]

Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012).
[CrossRef]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011).
[CrossRef]

J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001).
[CrossRef]

M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001).
[CrossRef]

Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010).
[CrossRef]

Europhys. Lett. (1)

C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001).
[CrossRef]

S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000).
[CrossRef]

C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007).
[CrossRef]

Nano Lett. (1)

D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007).
[CrossRef]

Nanoscale Res. Lett. (1)

A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011).
[CrossRef] [PubMed]

Nanotechnology (2)

Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010).
[CrossRef] [PubMed]

Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013).
[CrossRef]

Phys. Rev. B (5)

D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007).
[CrossRef]

H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001).
[CrossRef]

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000).
[CrossRef]

M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002).
[CrossRef]

O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996).
[CrossRef] [PubMed]

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006).
[CrossRef] [PubMed]

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005).
[CrossRef] [PubMed]

Science (1)

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Surface morphology of the 15 layer uncapped Ge QDCs. Inset shows the FFT image. (b) HRTEM of a Ge QD column in 10 layer QDCs. (c) Schematic 3D structure of the Ge QDCs.

Fig. 2
Fig. 2

Normalized 16 K PL spectra of Ge QDCs with various numbers of stacked QD layers at different excitation powers, (a) single-layer, (b) 5-layer, (c) 10-layer, (d) 20-layer. The peak energy blueshifts are illustrated by dash lines.

Fig. 3
Fig. 3

The spectral linewidth and the peak energy blueshift (at the excitation powers of 0.07 and 1.2 W respectively) as a function of the periodic number.

Fig. 4
Fig. 4

Integrated PL intensity as a function of excitation power for the QDCs with different periodic numbers. The value of m ranging from 0.5 to 0.7 exhibits a typical sublinear power dependence of QDs with type-II band alignment.

Fig. 5
Fig. 5

The ratios of the integrated intensity of the TO phonon and that of the entire PL spectrum at the excitation power of 1.2 W as a function of the periodic number. The decomposed TO and NP PL peaks are indicated by dash lines in the inset for the 5 layer QDCs sample.

Fig. 6
Fig. 6

Reflectivity of the 20 layer QDCs and reference QDs sample measured at room temperature. The PL spectrum for the 20 layer QDCs measured at 16 K is also illustrated. Two reflectivity minima are indicated by dash lines and are denoted by P1 and P2 respectively.

Metrics