Abstract

The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
    [CrossRef]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
    [CrossRef]
  3. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
    [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  5. Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20(16), 17610–17619 (2012).
    [CrossRef] [PubMed]
  6. F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
    [CrossRef]
  7. S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011).
    [CrossRef]
  8. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
    [CrossRef] [PubMed]
  9. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
    [CrossRef]
  10. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol.27(19), 4297–4305 (2009).
    [CrossRef]
  11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
    [CrossRef] [PubMed]
  12. K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).
  13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009).
    [CrossRef] [PubMed]
  14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008).
    [CrossRef] [PubMed]
  15. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012).
    [CrossRef] [PubMed]
  16. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).
  17. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999).
    [CrossRef]
  18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006).
    [CrossRef] [PubMed]
  19. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).
  20. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012).
    [CrossRef]
  21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
    [CrossRef]
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  23. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
    [CrossRef]
  24. Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
    [CrossRef]
  25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
    [CrossRef]
  26. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett.33(16), 1822–1824 (2008).
    [CrossRef] [PubMed]
  27. J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1–6), 205–209 (2003).
    [CrossRef]
  28. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol.24(7), 2649–2662 (2006).
    [CrossRef]
  29. V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011).
    [CrossRef]
  30. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
    [CrossRef]
  31. M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012).
    [CrossRef] [PubMed]
  32. M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).
  33. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010).
    [CrossRef] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  35. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25(11), 1938–1948 (2008).
    [CrossRef]
  36. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985).
    [CrossRef] [PubMed]
  37. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
    [CrossRef] [PubMed]
  38. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
    [CrossRef]
  39. A. M. Weiner, Ultrafast Optics (Wiley, 2009), Chap. 3.

2012 (8)

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012).
[CrossRef]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012).
[CrossRef] [PubMed]

Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20(16), 17610–17619 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

2011 (5)

V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011).
[CrossRef]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

2010 (3)

2009 (3)

2008 (4)

2007 (1)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

2006 (2)

2003 (2)

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).

1999 (1)

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999).
[CrossRef]

1998 (1)

K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).

1993 (1)

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
[CrossRef]

1985 (2)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985).
[CrossRef] [PubMed]

Aksyuk, V.

Alic, N.

Andres, P.

V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011).
[CrossRef]

Andrés, P.

Azana, J.

J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1–6), 205–209 (2003).
[CrossRef]

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Boppart, S. A.

Chen, L.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Choi, S.

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

Clarke, A.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).

Diddams, S.

S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Eggleton, B.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Finot, C.

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Fujiwara, M.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Heritage, J. P.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Hosako, I.

Huang, C. B.

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Ibsen, M.

Imai, K.

K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).

Ishizu, H.

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

Iwatsuki, K.

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Johnson, A. M.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Kani, J.

Kashiwagi, K.

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

Kawanishi, T.

Kibler, B.

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Kobe, R.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

Kodama, Y.

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Komukai, T.

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Kourogi, M.

K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).

Kubota, H.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).

Kuo, B. P.

Kurokawa, T.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett.33(16), 1822–1824 (2008).
[CrossRef] [PubMed]

Leaird, D. E.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010).
[CrossRef] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Learid, D. E.

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Liu, Y.

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010).
[CrossRef] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Metcalf, A. J.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Miao, H.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
[CrossRef]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
[CrossRef]

Morohashi, I.

Mukasa, K.

Myslivets, E.

Nakazawa, M.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Ohtsu, M.

K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).

Papp, S.

S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011).
[CrossRef]

Park, S. G.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006).
[CrossRef] [PubMed]

Petropoulos, P.

X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012).
[CrossRef]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006).
[CrossRef] [PubMed]

Provost, L.

Radic, S.

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Richardson, D. J.

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Roelens, M.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).

Roelens, M. A.

Sakamoto, T.

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
[CrossRef]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Shioda, T.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

Song, M.

Sotobayashi, H.

Srinivasan, K.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Stolen, R. H.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985).
[CrossRef] [PubMed]

Supradeepa, V. R.

Suzuki, H.

Suzuki, K.

Takachio, N.

Takada, A.

Takushima, Y.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999).
[CrossRef]

Tamura, K.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).

Tanaka, Y.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

Teshima, M.

Thurston, R. N.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

Tomlinson, W. J.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985).
[CrossRef] [PubMed]

Tong, Z.

Torres-Company, V.

Tsuda, H.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

Tu, H.

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

van Howe, J.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Wabnitz, S.

Wang, J.

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Wang, P. H.

Weiner, A. M.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012).
[CrossRef] [PubMed]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010).
[CrossRef] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Wiberg, A. O.

Williams, D.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

Xu, C.

Yamamoto, T.

Yang, X.

Appl. Phys. Lett. (1)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985).
[CrossRef]

Electron. Lett. (1)

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012).
[CrossRef]

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999).
[CrossRef]

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).

J. Lightwave Technol. (7)

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Opt. Commun. (1)

J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1–6), 205–209 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012).
[CrossRef] [PubMed]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985).
[CrossRef] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett.33(16), 1822–1824 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011).
[CrossRef]

Prog. Opt. (1)

V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Other (4)

M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010).
[CrossRef]

A. M. Weiner, Ultrafast Optics (Wiley, 2009), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental scheme to generate supercontinuum flat-topped comb and the application for high quality temporal pulse compression. CW: continuous wave; IM: intensity modulator; PM: phase modulator; PS: phase shifter; AMP: RF amplifier; SMF: single-mode fibers; PC: polarization controller; OFA: Er-Yb-doped optical fiber amplifier; HNLF: highly nonlinear fiber; AC: autocorrelator.

Fig. 2
Fig. 2

Experimental results [25]. (a) Experimentally measured optical spectrum of the frequency comb generated from Fig. 1 (blue) with Gaussian fit (red); (b) Experimentally measured comb phase (blue) with quadratic fit (red) vs. comb line number which increases in wavelength; (c) Normalized intensity autocorrelation (blue) of the output pulse after comb propagation through 750 m of SMF and calculation (red) based on the comb spectrum in (a) assuming a flat phase on a linear scale.

Fig. 3
Fig. 3

Simulation results (a) Propagating Gaussian pulse in 150 m HNLF with 1.7 W average power. Initial pulse with 3-ps FWHM (black), output pulse (blue) and corresponding autocorrelation trace (red); (b) Output optical spectrum envelope (blue) and phase (black) with quadratic fit (red).

Fig. 4
Fig. 4

Experimental optical power spectrum after propagation in 150-m HNLF with 1.7-W pulse average power before HNLF measured with 0.01nm OSA resolution. A spectral window, equivalent to a bandpass filter, keeps the center spectrum with linear chirp.

Fig. 5
Fig. 5

Stability analysis: (a) Simulated optical spectrum (blue) with spectral phase (black) and quadratic fit (red) at 0.75 W average power. (b) Optical spectrum measured with 0.01nm OSA resolution. (c) Stability analysis which shows spectral amplitude standard deviation of each comb line versus the number of comb line and wavelength after approximately 70 minutes of measurements.

Fig. 6
Fig. 6

Application of the flat-topped super-continuum comb for short pulse compression. Measured autocorrelation traces of the initial Gaussian pulse, after compression, at the output of the first box in Fig. 1 shown as black traces in (a)-(c)); (a) Blue trace: measured autocorrelation trace of pulse with the whole spectrum of super-continuum comb without phase compensation; (b) blue trace: measured autocorrelation trace of pulses with the whole spectrum of super-continuum comb after quadratic phase compensation; red trace: calculated autocorrelation trace with the input super-continuum comb assuming a flat phase; (c) blue trace: measured autocorrelation trace of pulse with the truncated spectrum of super-continuum comb after quadratic phase compensation; red trace: calculated autocorrelation trace with the truncated super-continuum comb assuming a flat phase. An excellent agreement between the experimental and simulated autocorrelation traces indicates accurate spectral phase compensation. Inset is the zoom-in of measured pulse autocorrelation trace. The corresponding pulse shape is calculated in (d).

Metrics