Abstract

Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
    [CrossRef]
  2. Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
    [CrossRef]
  3. Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
    [CrossRef]
  4. W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
    [CrossRef]
  5. W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
    [CrossRef]
  6. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
    [CrossRef]
  7. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
    [CrossRef]
  8. T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
    [CrossRef]
  9. T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
    [CrossRef]
  10. C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
    [CrossRef]
  11. F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
    [CrossRef]
  12. F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
    [CrossRef]
  13. M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004).
    [CrossRef]
  14. M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
    [CrossRef] [PubMed]
  15. A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
    [CrossRef]
  16. Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
    [CrossRef]
  17. F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
    [CrossRef]
  18. A. Czernichowski, “Gliding arc - Applications to engineering and environment control,” Pure Appl. Chem.66(6), 1301–1310 (1994).
    [CrossRef]
  19. A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
    [CrossRef]
  20. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
    [CrossRef]
  21. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
    [CrossRef]
  22. O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
    [CrossRef]
  23. Y. Kusano, “Plasma surface modification at atmospheric pressure,” Surf. Eng.25(6), 415–416 (2009).
    [CrossRef]
  24. Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
    [CrossRef]
  25. P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010).
    [CrossRef]
  26. I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
    [CrossRef]
  27. S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
    [CrossRef]
  28. S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
    [CrossRef]
  29. F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
    [CrossRef]
  30. B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
    [CrossRef]
  31. S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).
  32. X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
    [CrossRef]
  33. Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
    [CrossRef]
  34. N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
    [CrossRef]
  35. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
    [CrossRef]
  36. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
    [CrossRef]
  37. J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
    [CrossRef]
  38. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
    [CrossRef]
  39. R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).
  40. S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
    [CrossRef]
  41. A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
    [CrossRef]
  42. A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
    [CrossRef]
  43. S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
    [CrossRef]

2012 (4)

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
[CrossRef]

2011 (8)

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
[CrossRef]

2010 (5)

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
[CrossRef]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
[CrossRef]

P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010).
[CrossRef]

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

2009 (1)

Y. Kusano, “Plasma surface modification at atmospheric pressure,” Surf. Eng.25(6), 415–416 (2009).
[CrossRef]

2008 (5)

M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
[CrossRef] [PubMed]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

2007 (1)

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

2006 (3)

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

2005 (3)

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
[CrossRef]

2004 (1)

M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004).
[CrossRef]

2003 (1)

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

2002 (3)

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

2000 (2)

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

1999 (1)

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

1998 (2)

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

1996 (1)

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

1994 (1)

A. Czernichowski, “Gliding arc - Applications to engineering and environment control,” Pure Appl. Chem.66(6), 1301–1310 (1994).
[CrossRef]

1990 (1)

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).

Addou, A.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Andersen, T. L.

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Balcon, N.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Bardenshtein, A.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

Benard, N.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Benstaali, B.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Bindslev, H.

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

Bogaerts, A.

S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
[CrossRef]

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

Boubert, P.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Braud, P.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Brisset, J. L.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Bruggeman, P.

P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010).
[CrossRef]

Carter, C.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

Cauneau, F.

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

Chapelle, J.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

Cheron, B. G.

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Chirokov, A.

A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
[CrossRef]

Cormier, J. M.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

Czernichowski, A.

A. Czernichowski, “Gliding arc - Applications to engineering and environment control,” Pure Appl. Chem.66(6), 1301–1310 (1994).
[CrossRef]

Delalondre, C.

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

Desmaison, J.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Drews, J.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Du, C. M.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Fateev, A.

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Feuilloley, M. G. J.

M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
[CrossRef] [PubMed]

Frants, O. B.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

Fresnet, F.

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

Fridman, A.

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
[CrossRef]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Fridman, A. A.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
[CrossRef]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
[CrossRef]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

Fulcheri, L.

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

Gallon, H. J.

X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
[CrossRef]

Gangoli, S.

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

Gangoli, S. P.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
[CrossRef]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
[CrossRef]

Geyman, V. G.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

Ghanbari-Siahkali, A.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Gijbels, R.

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

Goutianos, S.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Gutsol, A.

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
[CrossRef]

Gutsol, A. F.

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
[CrossRef]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
[CrossRef]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

Hammack, S.

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

Hansen, F.

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

Hanson, R. K.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).

Jacobsen, T.

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

Ju, Y.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

Kalashnikov, N. Y.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

Kasyanov, V. S.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

Kennedy, L. A.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Kingshott, P.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Korolev, Y. D.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

Koulidiati, J.

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

Krebs, N.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

Kruger, C. H.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Kusano, Y.

S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
[CrossRef]

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

Y. Kusano, “Plasma surface modification at atmospheric pressure,” Surf. Eng.25(6), 415–416 (2009).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Kuznetsova, I. V.

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

Lacava, P. T.

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Landl, N. V.

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

Laroussi, M.

M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004).
[CrossRef]

Laux, C. O.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Lebouvier, A.

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

Lee, T.

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

Leipold, F.

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004).
[CrossRef]

Leprince, P.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Li, H. X.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Liu, H.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Maciel, H. S.

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Michelsen, P. K.

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Mitra, S.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Mizuno, A.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Moreau, E.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Moreau, M.

M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
[CrossRef] [PubMed]

Morgen, P.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Mortensen, H.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Musiol, K.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

Mutaf-Yardimci, O.

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Nester, S.

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Neto, A. H.

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Neyts, E.

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

Norrman, K.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Ombrello, T.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

Ombrellol, T.

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

Orange, N.

M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
[CrossRef] [PubMed]

Paul, P. H.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).

Pellerin, S.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

Pereira Filho, A. C.

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Pokrzywka, B.

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

Qin, X.

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

Rao, X.

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

Richard, F.

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

Rozlosnik, N.

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Sagas, J. C.

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Saveliev, A.

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Saveliev, A. V.

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

Schram, D. C.

P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010).
[CrossRef]

Schultz-Jensen, N.

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

Seitzman, J. M.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).

Singh, S. V.

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

Sorensen, B. F.

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Spence, T. G.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Stenum, B.

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Sun, W.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

Tendero, C.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Teodoru, S.

S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Tixier, C.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Touchard, G.

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

Tristant, P.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Tsakadze, E.

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Tu, X.

X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
[CrossRef]

Uddi, M.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

van der Mullen, J.

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

Wang, J.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Whitehead, J. C.

X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
[CrossRef]

Won, S. H.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

Xiong, Y.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Zare, R. N.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Zhang, L.

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

AIAA J. (2)

T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008).
[CrossRef]

T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006).
[CrossRef]

Appl. Phys. B-Photo. (1)

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).

Biotechnol. Adv. (1)

M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008).
[CrossRef] [PubMed]

Combust. Flame (1)

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012).
[CrossRef]

Food Contr. (2)

F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010).
[CrossRef]

F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011).
[CrossRef]

Fuel (1)

F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006).
[CrossRef]

High Temp. Mater. P-US. (1)

S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).

IEEE Trans. Plasma Sci. (4)

X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011).
[CrossRef]

Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011).
[CrossRef]

S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011).
[CrossRef]

J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011).
[CrossRef]

Int. J. Adhes. Adhes. (1)

Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007).
[CrossRef]

Int. J. Mass Spectrom. (1)

M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004).
[CrossRef]

J. Adhes. Sci. Technol. (1)

Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010).
[CrossRef]

J. Appl. Phys. (3)

O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000).
[CrossRef]

I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002).
[CrossRef]

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996).
[CrossRef]

J. Phys. D Appl. Phys. (6)

S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999).
[CrossRef]

S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000).
[CrossRef]

N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008).
[CrossRef]

A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005).
[CrossRef]

A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012).
[CrossRef]

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011).
[CrossRef]

J. Propul. Power (1)

A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008).
[CrossRef]

New J. Phys. (1)

C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012).
[CrossRef]

Plasma Chem. Plasma Process. (1)

B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002).
[CrossRef]

Plasma Process. Polym. (2)

S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012).
[CrossRef]

A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005).
[CrossRef]

Plasma Sources Sci. Technol. (4)

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010).
[CrossRef]

S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010).
[CrossRef]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010).
[CrossRef]

Proc. Combust. Inst. (1)

W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011).
[CrossRef]

Prog. Energ. Combust. (1)

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998).
[CrossRef]

Pure Appl. Chem. (1)

A. Czernichowski, “Gliding arc - Applications to engineering and environment control,” Pure Appl. Chem.66(6), 1301–1310 (1994).
[CrossRef]

Spectrochim. Acta B. (2)

A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002).
[CrossRef]

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006).
[CrossRef]

Surf. Coat. Tech. (3)

Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005).
[CrossRef]

Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011).
[CrossRef]

Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008).
[CrossRef]

Surf. Eng. (1)

Y. Kusano, “Plasma surface modification at atmospheric pressure,” Surf. Eng.25(6), 415–416 (2009).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (3840 KB)     
» Media 2: MOV (2348 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Photograph of an ambient-air gliding arc discharge taken with a digital camera (Cannon 350D) using an exposure time of 33 ms.

Fig. 2
Fig. 2

Photographs of an ambient-air gliding arc discharge taken every 50 μs. The exposure time of the digital camera was 13.9 μs. A new plasma column ignites in the third frame after which the previous discharge extinguishes and the optical emissions decay.

Fig. 3
Fig. 3

The electrical scheme and the timing-controller system for the gliding arc discharge. HV, high-voltage power supply; SG, signal generator; DG, time delay generator and ICCD, intensified CCD camera. A digital oscilloscope was employed to monitor and record the current and voltage wave forms, the time-gating of the ICCD, laser pulses and the trigger signal from the SG.

Fig. 4
Fig. 4

Typical voltage and current waveforms recorded by the oscilloscope.

Fig. 5
Fig. 5

Electronic waveform and timing notations. In the burst mode, the gliding arc was driven by a 10 Hz repetitive burst of 31.25 kHz AC powder with a burst duration Tp of 20 ms. TD: delay time to the desired half cycle in which data ass taken; Td: the phase delay time of data acquisition; Tg: the ICCD exposure or gate time. In the case of continuous mode, Td and Tg keep the same meaning as in the burst mode.

Fig. 6
Fig. 6

An example of a short-cut event recorded at 20 kHz framing rate using an exposure time of 13.9 μs. The short-cut current path is indicated by the arrow in the frame of t = 50 μs where a Townsend breakdown occurs between the two legs of the plasma column, and a new current path forms. The integrated emission intensities of the plasma column (the part in the dashed box) are shown as a function of time to the right. A 50 kHz movie revealing the plasma evolution can be found in the supplements (Media 1).

Fig. 7
Fig. 7

The projected length of the plasma column in 10,000 continuously recorded frames. New ignition happened in tens to hundreds of ms while the time between two subsequent short-cutting events (only part of which were marked by the red arrow) was always less than 10 ms.

Fig. 8
Fig. 8

The relation between integrated emission signal intensity and the projected length of the plasma column. Before the bar B, the anchor points of the plasma column were gliding up along the electrodes, and after that the anchor points were stationary on the top of the electrodes.

Fig. 9
Fig. 9

(a) Sequential images of part of the plasma column. (b) The integrated emission intensity varying with time. (c) Fast Fourier transform for the curve in (b) for 17,000 frames.

Fig. 10
Fig. 10

(a) Distribution possibility of plasma column at 17.5 SLM air flow. (b) The estimated velocity of the plasma column using high frame rate images. The scaling velocity of 20 m/s is indicated showing that the upper part of the plasma column moves at about 8 m/s. High-speed Schlieren movie can be found in the supplements (Media 2).

Fig. 11
Fig. 11

Optical emission spectra of the gliding arc plasma recorded at different heights using a fiber-coupled spectrometer. The spectra at heights (a) and (b) are shown in curves to visualize the corresponding species.

Fig. 12
Fig. 12

Phase-resolved optical emission spectra of the plasma column at height ranges (a) 4.8 – 6.2 cm and (b) 0.4 −1.8 cm with the center at H = 5.5 cm and 1.1 cm, respectively. The gliding arc was operated in burst mode at 10 Hz. The camera exposure time was 5.3 μs and three Td values (0, 5, and 10 μs) were adopted, i.e., the emission in a half cycle was temporally resolved in a resolution of 5.3 μs. The spectra shown were averaged over 100 frames, and the intensity had been modified by the instrumental spectral response. Note the different intensity scales adopted in (a) and (b).

Fig. 13
Fig. 13

Single-shot OH PLIF images captured using the ICCD with two gate times, (left) 30 ns for only capturing PLIF signal of ground-state OH and (right) 2 μs for capturing both OH-PLIF signal and plasma column emission. Ground-state OH is located around the plasma column (the red arrow), therefore a hollow structure appears in the OH-PLIF image to the right. Even when the current path is extinct, the ground-state OH still survives (the white arrow). The laser beam sheet contained the central line of the jet between the two electrodes and crossed the plane defined by the electrodes at an angle of 45 degrees.

Fig. 14
Fig. 14

OH PLIF image collected above the electrodes. The laser beam sheet contained the central line the jet between the two electrodes and perpendicularly crossed with the plane defined by the two electrodes. Vertical and horizontal cross sections of OH PLIF distribution show the thickness of OH radical in this case.

Fig. 15
Fig. 15

(upper) Spectrally and spatially resolved, single-shot image of the plasma column in the VU spectral region recorded by an imaging spectrometer (gate time = 5.3 μs). (upper right) cross section in the area between two blue dash line. (lower) the spectra integrated in the area between two red dash lines.

Fig. 16
Fig. 16

(a) OH PLIF signal intensity as a function of time in a half cycle. (b) The emission intensity of plasma column (290 nm – 405 nm) in a half cycle. The averaged signals were based on 100 frames and the plasma column length had been counted. The zero point in the time scales indicated the beginning of a half cycle, when V(voltage) = 0. The gliding arc was synchronized with the laser and the ICCD camera.

Fig. 17
Fig. 17

The evolution of ground-state OH global distribution by accumulating 120 shots of OH-PLIF. The gliding arc discharge was run in the burst mode, and the phase delay time Td was kept at 8 μs. The plasma delay times TD are shown above the images.

Fig. 18
Fig. 18

Integrated signal intensity of OH PLIF and the height of the GA plasma column as a function of time TD shown as filled circles and squares, respectively, and the solid lines are the polynomial fits. The velocity of the gliding arc plasma evolution is estimated by differentiating the polynomial fit (the blue solid line) of plasma height.

Metrics