Abstract

Efficient three-photon luminescence (3PL) from a scintillating silicate glass co-doped with Gd3+ and Tb3+ was generated by using a focused femtosecond laser beam at 800 nm. Four emission bands centered at 496, 541, 583, and 620 nm were identified as the electronic transitions between the energy levels of Tb3+ followed by three-photon absorption (3PA) in Gd3+ and Tb3+ and the resonant energy transfer from Gd3+ to Tb3+. More interestingly, a strong polarization dependence of the 3PL was observed and it is ascribed to the polarization dependent 3PA in Gd3+ and Tb3+ and/or the angular distribution of photogenerated electrons in the glass.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
    [CrossRef]
  2. D. F. Anderson, “Properties of the high-density scintillator cerium fluoride,” EEE Trans. Nucl. Sci.36(1), 137–140 (1989).
    [CrossRef]
  3. G. Zanella and R. Zannoni, “The detective quantum efficiency of an imaging detector,” Nucl. Instr. Meth. A359(3), 474–477 (1995).
    [CrossRef]
  4. C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
    [CrossRef]
  5. M. Nikl and C. Pedrini, “Photoluminescence of heavily doped CeF3:Cd2+ single crystals,” Solid State Commun.90(3), 155–159 (1994).
    [CrossRef]
  6. M. Nikl, “Scintillation detectors for X-rays,” Meas. Sci. Technol.17(4), R37–R54 (2006).
    [CrossRef]
  7. M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
    [CrossRef] [PubMed]
  8. W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
    [CrossRef]
  9. J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
    [CrossRef]
  10. D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
    [CrossRef]
  11. G. H. Dicke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).
  12. S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15(11), 6883–6888 (2007).
    [CrossRef] [PubMed]
  13. A.-H. Li, Z. R. Zheng, Q. Lü, L. Sun, W.-Z. Wu, W.-L. Liu, Y.-Q. Yang, and T.-Q. Lü, “Two-photon-excited luminescence in a Tb3+ -doped lithium niobate crystal pumped by a near-infrared femtosecond laser,” Opt. Lett.33(9), 1014–1016 (2008).
    [CrossRef] [PubMed]
  14. K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
    [CrossRef] [PubMed]
  15. K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
    [CrossRef] [PubMed]
  16. H. C. Aspinall, “Chiral lanthanide complexes: coordination chemistry and applications,” Chem. Rev.102(6), 1807–1850 (2002).
    [CrossRef] [PubMed]
  17. S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
    [CrossRef]
  18. J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activated heavy scintillating glasses,” J. Lumin.128(1), 99–104 (2008).
    [CrossRef]
  19. M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B28(7), 3677–3696 (1983).
    [CrossRef]
  20. R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
    [CrossRef]
  21. M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
    [CrossRef]
  22. H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
    [CrossRef]
  23. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
    [CrossRef]

2011 (1)

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

2009 (1)

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

2008 (2)

2007 (2)

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15(11), 6883–6888 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Nikl, “Scintillation detectors for X-rays,” Meas. Sci. Technol.17(4), R37–R54 (2006).
[CrossRef]

2004 (2)

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

2002 (1)

H. C. Aspinall, “Chiral lanthanide complexes: coordination chemistry and applications,” Chem. Rev.102(6), 1807–1850 (2002).
[CrossRef] [PubMed]

2001 (1)

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

2000 (1)

H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
[CrossRef]

1999 (2)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

1995 (1)

G. Zanella and R. Zannoni, “The detective quantum efficiency of an imaging detector,” Nucl. Instr. Meth. A359(3), 474–477 (1995).
[CrossRef]

1994 (2)

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

M. Nikl and C. Pedrini, “Photoluminescence of heavily doped CeF3:Cd2+ single crystals,” Solid State Commun.90(3), 155–159 (1994).
[CrossRef]

1993 (1)

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

1992 (1)

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

1989 (1)

D. F. Anderson, “Properties of the high-density scintillator cerium fluoride,” EEE Trans. Nucl. Sci.36(1), 137–140 (1989).
[CrossRef]

1983 (2)

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B28(7), 3677–3696 (1983).
[CrossRef]

M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
[CrossRef]

Andersen, C. E.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Anderson, D. F.

D. F. Anderson, “Properties of the high-density scintillator cerium fluoride,” EEE Trans. Nucl. Sci.36(1), 137–140 (1989).
[CrossRef]

Aspinall, H. C.

H. C. Aspinall, “Chiral lanthanide complexes: coordination chemistry and applications,” Chem. Rev.102(6), 1807–1850 (2002).
[CrossRef] [PubMed]

Aznar, M. C.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Bäck, S. Å. J.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Bettinelli, M.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Bivas, A.

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B28(7), 3677–3696 (1983).
[CrossRef]

Boiko, S.

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

Bøtter-Jensen, L.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Cheah, K. W.

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Cheng, J.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Cordero-Montalvo, C. D.

M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
[CrossRef]

Crosswhite, H.

M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
[CrossRef]

Dall’Igna, R.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Downer, M. C.

M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
[CrossRef]

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B28(7), 3677–3696 (1983).
[CrossRef]

Fabre, J. P.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Flegel, W.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Francini, R.

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

Fu, J.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activated heavy scintillating glasses,” J. Lumin.128(1), 99–104 (2008).
[CrossRef]

Gacon, J. C.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

Grassano, U. M.

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

Hanaoka, K.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

He, D.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Hirao, K.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Hu, L.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Jacquier, B.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

Jiang, Z. H.

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Kikuchi, K.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

Kjaer-Kristoffersen, F.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Kobayashi, M.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activated heavy scintillating glasses,” J. Lumin.128(1), 99–104 (2008).
[CrossRef]

Kobayashi, S.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

Krasnikov, A.

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

Kwok, W. M.

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Li, A.-H.

Li, S.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Liu, W.-L.

Locardi, B.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Lü, Q.

Lü, T.-Q.

Mares, J. A.

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

Marigo, A.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Martellotti, G.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Mattsson, S.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Medin, J.

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Miura, K.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Moine, B.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

Moon, B. K.

H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
[CrossRef]

Nagano, T.

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

Nass, P.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Nikl, M.

M. Nikl, “Scintillation detectors for X-rays,” Meas. Sci. Technol.17(4), R37–R54 (2006).
[CrossRef]

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

M. Nikl and C. Pedrini, “Photoluminescence of heavily doped CeF3:Cd2+ single crystals,” Solid State Commun.90(3), 155–159 (1994).
[CrossRef]

Nitsch, K.

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

Parker, J. M.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activated heavy scintillating glasses,” J. Lumin.128(1), 99–104 (2008).
[CrossRef]

Pedrini, C.

M. Nikl and C. Pedrini, “Photoluminescence of heavily doped CeF3:Cd2+ single crystals,” Solid State Commun.90(3), 155–159 (1994).
[CrossRef]

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

Phillips, D. L.

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Polato, P.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Qian, Q.

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

Qiu, J.

S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15(11), 6883–6888 (2007).
[CrossRef] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Scacco, A.

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

Seo, H. J.

H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
[CrossRef]

Siegmund, W. P.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Solovieva, N.

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Sun, L.

Tarasov, G. G.

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

Tsuboi, T.

H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
[CrossRef]

Wang, S.

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

Wilquet, G.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Wong, K. L.

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Wong, W. T.

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Wu, W.-Z.

Xu, S.

Yang, Y.-Q.

Yang, Z. M.

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

Yu, C.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Zacek, V.

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Zanella, G.

G. Zanella and R. Zannoni, “The detective quantum efficiency of an imaging detector,” Nucl. Instr. Meth. A359(3), 474–477 (1995).
[CrossRef]

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Zannoni, R.

G. Zanella and R. Zannoni, “The detective quantum efficiency of an imaging detector,” Nucl. Instr. Meth. A359(3), 474–477 (1995).
[CrossRef]

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Zazubovich, S.

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

Zhang, Q. Y.

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

Zhang, S.

Zheng, Z. R.

Zhou, S.

Zhu, B.

Angew. Chem. Int. Ed. Engl. (1)

K. L. Wong, W. M. Kwok, W. T. Wong, D. L. Phillips, and K. W. Cheah, “Green and red three-photon upconversion from polymeric lanthanide(III) complexes,” Angew. Chem. Int. Ed. Engl.43(35), 4659–4662 (2004).
[CrossRef] [PubMed]

Chem. Rev. (1)

H. C. Aspinall, “Chiral lanthanide complexes: coordination chemistry and applications,” Chem. Rev.102(6), 1807–1850 (2002).
[CrossRef] [PubMed]

EEE Trans. Nucl. Sci. (1)

D. F. Anderson, “Properties of the high-density scintillator cerium fluoride,” EEE Trans. Nucl. Sci.36(1), 137–140 (1989).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Hanaoka, K. Kikuchi, S. Kobayashi, and T. Nagano, “Time-Resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system,” J. Am. Chem. Soc.129(44), 13502–13509 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

R. Francini, U. M. Grassano, S. Boiko, G. G. Tarasov, and A. Scacco, “Anisotropy of two-photon excited f-f transitions of Eu2+ in KMgF3,” J. Chem. Phys.110(1), 457–464 (1999).
[CrossRef]

J. Inor. Materi. (1)

S. Wang, Q. Qian, Q. Y. Zhang, Z. M. Yang, and Z. H. Jiang, “Gd3+-sensitized Tb3+-doped scintillating silicate glasses,” J. Inor. Materi.24(4), 773–777 (2009).
[CrossRef]

J. Lumin. (2)

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activated heavy scintillating glasses,” J. Lumin.128(1), 99–104 (2008).
[CrossRef]

J. A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, and S. Zazubovich, “A role of Gd3+ in scintillating process in Tb-doped Na-Gd phosphate glasses,” J. Lumin.94–95, 321–324 (2001).
[CrossRef]

J. Phys. Condens. Matter (1)

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter4(24), 5461–5470 (1992).
[CrossRef]

J. Rare Earths (1)

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Energy transfer between Gd3+ and Tb3+ in phosphate glass,” J. Rare Earths29(1), 48–51 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

M. Nikl, “Scintillation detectors for X-rays,” Meas. Sci. Technol.17(4), R37–R54 (2006).
[CrossRef]

Nucl. Instr. Meth. A (2)

G. Zanella and R. Zannoni, “The detective quantum efficiency of an imaging detector,” Nucl. Instr. Meth. A359(3), 474–477 (1995).
[CrossRef]

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instr. Meth. A345(1), 198–201 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. C. Aznar, C. E. Andersen, L. Bøtter-Jensen, S. Å. J. Bäck, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, “Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams,” Phys. Med. Biol.49(9), 1655–1669 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (3)

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B28(7), 3677–3696 (1983).
[CrossRef]

M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite, “Study of new 4f7 levels of Eu2+ in GaF2 and SrF2 using two-photon absorption spectroscopy,” Phys. Rev. B28(9), 4931–4943 (1983).
[CrossRef]

H. J. Seo, B. K. Moon, and T. Tsuboi, “Two-photon excitation spectroscopy of 4f7-4f7 transitions of Eu2+ ions doped in a KMgF3 crystal,” Phys. Rev. B62(19), 12688–12695 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Solid State Commun. (1)

M. Nikl and C. Pedrini, “Photoluminescence of heavily doped CeF3:Cd2+ single crystals,” Solid State Commun.90(3), 155–159 (1994).
[CrossRef]

SPIE (1)

W. P. Siegmund, P. Nass, J. P. Fabre, W. Flegel, V. Zacek, G. Martellotti, and G. Wilquet, “Glasses as active and passive components for scintillating fiber detectors,” SPIE1737, 2–13 (1993).
[CrossRef]

Other (1)

G. H. Dicke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to generate the MPL from the scintillating glass and to investigate its dependence on the polarization of the fs laser light.

Fig. 2
Fig. 2

(a) Emission and excitation spectra of the glass under single photon excitation and its MPL spectra under different excitation densities at 800 nm. (b) Logarithmic plots of the PL peak intensity versus excitation density for the four different emission bands along with fits.

Fig. 3
Fig. 3

Energy level diagrams for Gd3+ and Tb3+ showing the 3PA in Gd3+ and Tb3+ followed by nonradiative relaxation (NR), resonant energy transfer (RET) from Gd3+ to Tb3+, and the electronic transitions between the energy levels of Tb3+ corresponding to the four emission bands observed in the MPL spectrum.

Fig. 4
Fig. 4

Absorption spectrum of the glass in the ultraviolet, visible and near infrared regions. The red and green arrows indicate the absorptions in Gd3+ due to the electronic transitions 8S7/26IJ and 8S7/26P7/2 while the blue one indicates the absorption in Tb3+ due to the electronic transition 7F65D4. The insets show the magnified spectral regions where the small absorption peaks can be identified. The vertical coordinate for each inset has been changed from linear to logarithmic in order to show clearly the absorption peaks.

Fig. 5
Fig. 5

(a) Polarization states of the fs laser light with polarization angles of 0°, 30°, 45°, 60°, and 90° after being reflected by the dichroic mirror. (b) Polarization dependent 3PL intensities at the central wavelengths of the four emission bands. (c) Excitation polarization dependent 3PL intensities at the central wavelengths of the four emission bands plotted in a polar coordinate.

Metrics