Abstract

In this paper, we report a fabrication of a three-dimensional (3D) carpet cloak that works for any polarization in free space. Two-dimensional (2D) conformal mapping is first employed and the 3D structure is generated by a rotation of the 2D cloak. The structure of the cloak is hole-in-dielectric. The triangular invisible region has a height of 36 mm (one third of the height of the whole device) and a width of 240 mm. The cloaking effect is examined in free space by measuring the scattering parameters. The results show our device has very good cloaking performance in a wide frequency range from 4 to10 GHz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
    [CrossRef] [PubMed]
  5. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009).
    [CrossRef] [PubMed]
  6. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  7. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
    [CrossRef]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  9. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  10. X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
    [CrossRef] [PubMed]
  11. B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
    [CrossRef] [PubMed]
  12. H.F. Ma and T. j. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Comm. 1, 124 (2011), Doi: 10.1038/ncomms1023 (2010).
    [CrossRef]
  13. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
    [CrossRef] [PubMed]
  14. U. Leonhardt and T. G. Philbin, “Chapter 2 Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
  15. U. Leonhardt and T. G. Philbin, “Geometry and light: the science of invisibility,” (Dover, Mineola, 2010).
  16. H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
    [CrossRef]
  17. T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
    [CrossRef]
  18. Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
    [CrossRef]
  19. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express17(22), 19947–19959 (2009).
    [CrossRef] [PubMed]
  20. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A27(5), 968–972 (2010).
    [CrossRef] [PubMed]
  21. R. F. Huang, S. Matitsine, L. Liu, L. B. Kong, R. Kumaran, and R. Balakrishnan, “Broadband free space material measurement system,” 33rd Annual Symposium of the Antenna Measurement Techniques Association (AMTA) Englewood, Colorado, USA, 2011, pp. 477–482.

2012 (1)

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

2011 (5)

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
[CrossRef]

2010 (2)

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A27(5), 968–972 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

2009 (5)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009).
[CrossRef] [PubMed]

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

2008 (1)

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Barbastathis, G.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Chen, H. Y.

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
[CrossRef]

Chen, X. Z.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Cui, T. J.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, K.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Jiang, W. X.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kundtz, N. B.

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Leonhardt, U.

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J. S.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Liu, X. G.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Liu, Y. C.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Luo, Y.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Ma, H. F.

Ma, Y. G.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A27(5), 968–972 (2010).
[CrossRef] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ong, C. K.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A27(5), 968–972 (2010).
[CrossRef] [PubMed]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Smith, D. R.

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Tyc, T.

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009).
[CrossRef] [PubMed]

Urzhumov, Y. A.

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

Valentine, J.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wang, N.

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Xu, T.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Yang, X. M.

Zentgraf, T.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, B. L.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

Zhang, J. J.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Zhang, S. A.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, Y.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Zhou, X. Y.

J. Opt. (1)

Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13(2), 024002 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat Commun (1)

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011), doi:.
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. A (2)

H. Y. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A83(5), 055801 (2011).
[CrossRef]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A86(4), 043827 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

Science (6)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Other (4)

H.F. Ma and T. j. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Comm. 1, 124 (2011), Doi: 10.1038/ncomms1023 (2010).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Chapter 2 Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).

U. Leonhardt and T. G. Philbin, “Geometry and light: the science of invisibility,” (Dover, Mineola, 2010).

R. F. Huang, S. Matitsine, L. Liu, L. B. Kong, R. Kumaran, and R. Balakrishnan, “Broadband free space material measurement system,” 33rd Annual Symposium of the Antenna Measurement Techniques Association (AMTA) Englewood, Colorado, USA, 2011, pp. 477–482.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Index profile. (a) Designed 2D cloak of the rectangular space with a small triangular bump at the bottom. The lines represent the new coordinate in the transformed space. The color represents the refractive index. The real index has a maximum value of 2.2 at tip b, and minimum value of 0.6 at tips a and c of the triangle. (b) The portion chosen for cloak fabrication. The cloaked region is a triangle with a base of 246 mm and a height is 36 mm which is one third of the height of the cloak of 108 mm. The continuous index profiles is discretized into blocks of unit cell of 6 × 6mm square . An index of each square is an average index over the area. The value of index at points a and c are approximated to 1. After the discretization process, the maximum index is 1.78, and minimum index is 1.

Fig. 2
Fig. 2

2D reflection patterns. They are calculated at 10 GHz. The incident beam is illuminated from the top left and the reflected beam is measured at an angle θ starting clockwise from the y axis as schematically shown in the middle inset. In these figures the Gaussian beam is incident at 45° from the y axis. (a) far-field polar intensity for a flat conducting ground. (b) polar intensity for a metal plane with a triangle bump. (c) polar intensity for ideal continuous cloak. (d) polar intensity for the meshed cloak (for real fabrication). The inset in each sub-figure shows the corresponding E field pattern.

Fig. 3
Fig. 3

Calculation of refractive index. Top is the index (n) vs. radius (r) curve and bottom is the diagram of the unit cell corresponding to the curve. For each unit cell, two E-field polarizations, i.e., E(P1) (blue curve) and E(P2) (red dashed curve), are shown. (a) 6 × 6 × 2 mm3 bricks made of Teflon with a cylindrical hole in the middle. (b) 6 × 6 × 6 mm3 bricks made of Teflon with a cylindrical hole in the middle. (c) 6 × 6 × 6 mm3 bricks made of Delrin with a cylindrical hole in the middle.

Fig. 4
Fig. 4

Fabricated device. (a) Top view of the cloak. (b) Bottom view of the cloak. (c) The bottom conical metal bump. (d) The assembled whole device

Fig. 5
Fig. 5

Sample measurement. (a) The schematic diagram for the relative position of the EM wave and sample in the TE and TM measurements. In TE (TM) mode the E (H) field is perpendicular to the face containing the symmetric axis. (b) The free space experimental set up. The whole system contains two movable arms in the horizontal plane, two antennas at the end of either arm, a sample holder in the middle, and a pair of focusing lenses.

Fig. 6
Fig. 6

Measurement result at 35° beam incidence. The reflection intensity lines are measured at4 GHz in (a), 7 GHz in (b), 8 GHz in (c) and 10 GHz in (d). In each figure, the solid black, red and blue lines represent the cases of the flat ground, TE and TM polarizations, respectively. The main peak is observed around 35° in each graph.

Fig. 7
Fig. 7

Measurement results at 45° beam incidence. The reflection intensity lines are measured at 4 GHz in (a), 7 GHz in (b), 8 GHz in (c) and 10 GHz in (d). In each figure, the solid black, red and blue lines represent the cases of the flat ground, TE and TM polarizations, respectively. The main peak is observed around 45°.

Metrics