Abstract

We demonstrate Gaussian-shaped phase matching of a periodically-poled potassium titanyl phosphate (PPKTP) crystal by imposing a custom duty-cycle pattern on its grating structure while keeping the grating period fixed. The PPKTP’s phase-matching characteristics are verified through optical difference-frequency generation measurements, showing good agreement with expected values based on our design parameters. Our theoretical analysis predicts that under extended phase-matching conditions the custom-poled PPKTP crystal is capable of generating heralded single photons with a spectral purity of 97%, and can reach as high as 99.5% with gentle spectral filtering, something that is highly desirable for photonic quantum information processing applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
    [CrossRef]
  2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
    [CrossRef] [PubMed]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
    [CrossRef] [PubMed]
  4. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
    [CrossRef]
  5. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
    [CrossRef]
  6. S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245 [quant-ph] (2010).
  7. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012).
    [CrossRef]
  8. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
    [CrossRef] [PubMed]
  9. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
    [CrossRef]
  10. J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett.31, 2798–2800 (2006).
    [CrossRef] [PubMed]
  11. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
    [CrossRef] [PubMed]
  12. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
    [CrossRef]
  13. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
    [CrossRef] [PubMed]
  14. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).
  15. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  16. R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
    [CrossRef] [PubMed]
  17. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
    [CrossRef]
  18. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
    [CrossRef] [PubMed]
  19. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
    [CrossRef] [PubMed]
  20. R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
    [CrossRef]
  21. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
    [CrossRef]
  22. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
    [CrossRef] [PubMed]
  23. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
    [CrossRef]
  24. I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006).
    [CrossRef]
  25. Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
    [CrossRef]
  26. R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
    [CrossRef]
  27. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
    [CrossRef] [PubMed]
  28. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
    [CrossRef] [PubMed]
  29. R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
    [CrossRef]
  30. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).
  31. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
    [CrossRef] [PubMed]
  32. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
    [CrossRef]
  33. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
    [CrossRef]
  34. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express17, 3441–3446 (2009).
    [CrossRef] [PubMed]
  35. M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
    [CrossRef]
  36. R. Boyd, Nonlinear optics (Academic Press, 1992).
  37. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
    [CrossRef]
  38. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett.22, 1341–1343 (1997).
    [CrossRef]
  39. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
    [CrossRef] [PubMed]
  40. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt.26, 2390–2394 (1987).
    [CrossRef] [PubMed]
  41. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22, 1553–1555 (1997).
    [CrossRef]
  42. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
    [CrossRef]
  43. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
    [CrossRef]
  44. S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,” Phys. Rev. A56, R3319–R3321 (1997).
    [CrossRef]
  45. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
    [CrossRef] [PubMed]

2012 (3)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012).
[CrossRef]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

2011 (3)

2010 (2)

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
[CrossRef]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

2009 (4)

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express17, 3441–3446 (2009).
[CrossRef] [PubMed]

2008 (5)

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

2006 (3)

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006).
[CrossRef]

J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett.31, 2798–2800 (2006).
[CrossRef] [PubMed]

2005 (3)

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

2004 (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
[CrossRef] [PubMed]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

2002 (2)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
[CrossRef]

2001 (1)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
[CrossRef]

2000 (2)

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

1997 (3)

1992 (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

1987 (2)

1985 (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

1836 (1)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

Aaronson, S.

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245 [quant-ph] (2010).

Albota, M. A.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

Ali Khan, I.

I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006).
[CrossRef]

Altepeter, J. B.

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
[CrossRef]

Arbore, M. A.

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

Arkhipov, A.

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245 [quant-ph] (2010).

Aspelmeyer, M.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012).
[CrossRef]

Baek, B.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

Bennink, R. S.

Beveratos, A.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Blauensteiner, B.

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

Boyd, R.

R. Boyd, Nonlinear optics (Academic Press, 1992).

Branczyk, A. M.

Branning, D.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

Byer, R.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

Byer, R. L.

Calkins, B.

Carrasco, S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Chen, J.

Chou, M. H.

Christ, A.

Cohen, O.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Dorenbos, S.

Dowling, J. P.

P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
[CrossRef]

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
[CrossRef] [PubMed]

Eckardt, R. C.

Eckstein, A.

Erdmann, R.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

Fan, T. Y.

Fan, Y. X.

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Fedrizzi, A.

Feigelson, R. S.

Fejer, M.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

Fejer, M. M.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett.22, 1341–1343 (1997).
[CrossRef]

Fiorentino, M.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

Galvanauskas, A.

Gerrits, T.

Gerry, C.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
[CrossRef]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
[CrossRef] [PubMed]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

Gisin, N.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Glancy, S.

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Grice, W.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

Grice, W. P.

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
[CrossRef]

Hadfield, R. H.

Halder, M.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Harter, D.

Herrmann, H.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

Hoffenberth, S.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

Howell, J. C.

I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006).
[CrossRef]

Hu, B. Q.

Huang, C. E.

Huang, Y.-P.

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
[CrossRef]

Hum, D. S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Jundt, D.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

Jundt, D. H.

Kaltenbaek, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

Kärtner, F. X.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

Klapwijk, T.

Knight, P.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
[CrossRef]

Knill, E.

Kok, P.

P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
[CrossRef]

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

Kumar, P.

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
[CrossRef]

J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett.31, 2798–2800 (2006).
[CrossRef] [PubMed]

Kurimura, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
[CrossRef] [PubMed]

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
[CrossRef]

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
[CrossRef] [PubMed]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Lee, H.

P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
[CrossRef]

Lee, K. F.

Liang, C.

Liang, Q.-Y.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Lita, A.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
[CrossRef] [PubMed]

Lukin, M. D.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Lundeen, J. S.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
[CrossRef] [PubMed]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

Magel, G.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

Mirin, R. P.

Mosley, P. J.

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express17, 3441–3446 (2009).
[CrossRef] [PubMed]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Nagata, T.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

Nam, S. W.

Nasr, M. B.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Noh, J.

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

O’Brien, J. L.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

Okamoto, R.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

Osorio, C. I.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Pohl, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Pomarico, E.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

Popescu, S.

S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,” Phys. Rev. A56, R3319–R3321 (1997).
[CrossRef]

Prevedel, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Ralph, T. C.

Rangarajan, R.

R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
[CrossRef]

Raymer, M. G.

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

Rohrlich, D.

S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,” Phys. Rev. A56, R3319–R3321 (1997).
[CrossRef]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

Saleh, B. E. A.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

Sasaki, K.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

Silberhorn, C.

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express17, 3441–3446 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

Simon, C.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

Smith, B. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

Stace, T. M.

Stevens, M. J.

Takeuchi, S.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

Teich, M. C.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Thew, R. T.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

Torner, L.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Torres, J. P.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Tovstonog, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
[CrossRef] [PubMed]

U’Ren, A. B.

R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
[CrossRef]

Vicent, L. E.

R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
[CrossRef]

Vuletic, V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Walmsley, I. A.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
[CrossRef]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
[CrossRef] [PubMed]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012).
[CrossRef]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

White, A. G.

Wong, F. N. C.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

Zbinden, H.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

Zeilinger, A.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

Zijlstra, T.

Zukowski, M.

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

Zwiller, V.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999).
[CrossRef]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

IEEE J. Quant.Electron. (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992).
[CrossRef]

J. Mod. Opt. (1)

R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011).
[CrossRef]

Las. Phys. (1)

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).

Nat. Phys. (2)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007).
[CrossRef]

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012).
[CrossRef]

Nature (1)

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

New J. Phys. (2)

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (11)

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005).
[CrossRef]

S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,” Phys. Rev. A56, R3319–R3321 (1997).
[CrossRef]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000).
[CrossRef]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002).
[CrossRef]

I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006).
[CrossRef]

Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010).
[CrossRef]

R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001).
[CrossRef]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985).
[CrossRef] [PubMed]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009).
[CrossRef]

P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002).
[CrossRef]

Phys. Rev. Lett. (11)

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009).
[CrossRef]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008).
[CrossRef] [PubMed]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006).
[CrossRef] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000).
[CrossRef] [PubMed]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008).
[CrossRef] [PubMed]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005).
[CrossRef] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008).
[CrossRef] [PubMed]

Science (2)

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004).
[CrossRef] [PubMed]

Other (3)

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245 [quant-ph] (2010).

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
[CrossRef]

R. Boyd, Nonlinear optics (Academic Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of 50:50 duty cycle (left panel) and modulated duty cycle (right panel). Both cases have the same poling period, but the ratio of positive to negative domain segments changes along the length of the crystal when duty-cycle modulation is employed.

Fig. 2
Fig. 2

Duty-cycle modulations for periodically-poled crystals. The blue curve shows the duty-cycle variation along the length of a custom-poled 12-mm-long PPKTP crystal, governed by Eq. (8). The red curve shows the duty cycle along the length of a uniformly poled, 50:50 duty-cycle PPKTP crystal of equivalent length.

Fig. 3
Fig. 3

The measured data, a Gaussian fit to the data, and the predicted DFG output (proportional to |Gk)|2) of the custom-poled crystal are shown as a function of wavelength of the tunable probe laser λ2 with the pump-laser wavelength fixed at 790.9 nm. Blue points show the measured data, the blue curve shows the predictions from the numerical crystal model of Eq. (7), the dashed red curve shows a Gaussian function fit to the measured data. The same data are plotted on linear (left panel), and dB (right panel) scales. Uncertainties in the measured data are approximately ±3 × 10−3 or −25 dB.

Fig. 4
Fig. 4

Entropy of entanglement Hψ from Eq. (13) (left panel) and heralded-state purity Pψ from Eq. (14) (right panel) as functions of FWHM pump bandwidth. The red curves show the results for the output state of a 8.1 mm long standard uniformly-poled PPKTP crystal, and the blue curves display the results for the output of our custom Gaussian duty-cycle modulated 12 mm long crystal. The black curves near the optimal pump bandwidth of 1.40 nm show the results for the output of our custom-poled crystal with mild filtering (8.5 nm FWHM filter). The dotted line on the purity plot at Pψ = 1 is the maximum possible purity.

Fig. 5
Fig. 5

Calculated joint spectral amplitudes |β̃(λs, λi)Gk)| are shown in density plots for SPDC output states from a standard uniformly-poled 8.1 mm crystal (left panel) and for our Gaussian duty-cycle modulated 12 mm crystal (right panel). Side lobes are strongly suppressed in the state from the Gaussian duty-cycle modulated crystal. The legend on the right is in units of nm−2.

Tables (1)

Tables Icon

Table 1 Calculated output characteristics of five different PPKTP crystal types (12-mm crystal length): standard uniformly-poled crystal (Standard), poling-order modulated crystal of Brańczyk et al.[21] (Poling-Order), the crystal of Brańczyk et al. with 11.3 nm wide spectral filtering of the SPDC output (Poling-Order Filtered), our custom duty-cycle modulated crystal (Duty-Cycle), our our custom duty-cycle modulated crystal with 8.5 nm wide spectral filtering of the SPDC output (Duty-Cycle Filtered). Calculated characteristics are: nonlinearity strength relative to the standard crystal (Rel. NL), output DFG FWHM spectral bandwidth for a monochromatic pump (DFG BW), maximum heralded-state purity (Purity), the minimum state-entropy (Entropy), SPDC output flux relative to the standard crystal (Flux), and SPDC FWHM bandwidth (SPDC BW).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E 3 = Γ d eff L G ( Δ k ) ,
G ( Δ k ) = 1 L 0 L g ( z ) exp ( i Δ k z ) d z ,
Δ k = k 1 k 2 k 3 ,
I 3 = 1 2 n 3 c ε 0 | E 3 | 2 = α | G ( Δ k ) | 2
α = 8 π d eff 2 L 2 I 1 I 2 c ε 0 n 1 n 2 n 3 λ 3 2 ,
g ( z ) = j = 0 N ( 1 ) j [ H ( z z j ) H ( z z j + 1 ) ] ,
G ( Δ k ) = 2 Δ k L j = 0 N ( 1 ) j sin [ Δ k ( z j + 1 z j ) / 2 ] exp [ i Δ k ( z j + 1 + z j ) / 2 ] .
r ( z ) = 1 2 [ 1 + 0.9 erf ( z L / 2 0.45 L ) ] 0.9 × exp [ ( z L 0.655 L ) 2 ] .
| ψ = d ω s 2 π d ω i 2 π β ( ω s , ω i ) G ( Δ k ) | ω s | ω i ,
β ( ω s , ω i ) = ω s ω i n s n i E p ( ω s + ω i ) ,
| ψ = d λ s d λ i β ˜ ( λ s , λ i ) G ( Δ k ) | λ s | λ i ,
β ˜ ( λ s , λ i ) = 1 ( λ s λ i ) 2 × β ( 2 π c λ s , 2 π c λ i ) ,
H ψ i k i log 2 k i ,
P ψ ( i k i 2 ) / ( i k i ) 2 .

Metrics