Abstract

The functional principle of a novel technique for frequency shifting lines of an optical frequency comb is demonstrated. The underlying principle is to shift the carrier frequency by changing the carrier phase within the time span between subsequent pulses of a mode-locked laser used as comb generator. This universal frequency shifter does not require intrusion into the comb generator and provides high agility for arbitrary temporal frequency evolutions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  2. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, (Kluwer Academic Publishers / Springer, 2005), http://jila.colorado.edu/yelabs/pubs/scienceArticles/2005/sArticle_2005_YeCundiff_CombBook.pdf .
  3. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett.17(18), 1307–1309 (1992).
    [CrossRef] [PubMed]
  4. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express10(12), 515–520 (2002).
    [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett.30(17), 2323–2325 (2005).
    [CrossRef] [PubMed]
  6. V. Ahtee, M. Merimaa, and K. Nyholm, “Single-frequency synthesis at telecommunication wavelengths,” Opt. Express17(6), 4890–4896 (2009).
    [CrossRef] [PubMed]
  7. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
    [CrossRef]
  8. I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
    [CrossRef]
  9. O. Gobert, P. M. Paul, J. F. Hergott, O. Tcherbakoff, F. Lepetit, P. D. Oliveira, F. Viala, and M. Comte, “Carrier-envelope phase control using linear electro-optic effect,” Opt. Express19(6), 5410–5418 (2011).
    [CrossRef] [PubMed]
  10. K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
    [CrossRef]
  11. R. E. Saperstein, N. Alić, D. Panasenko, R. Rokitski, and Y. Fainman, “Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses,” J. Opt. Soc. Am. B22(11), 2427–2436 (2005).
    [CrossRef]
  12. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
    [CrossRef]
  13. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
    [CrossRef]
  14. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
    [CrossRef]
  15. H. R. Telle, “Absolute Measurement of Optical Frequencies,” in Frequency Control of Semiconductor Lasers, M. Ohtsu ed. (Wiley, 1996), Chap. 5, pp. 137.
  16. F. L. Walls, “Phase noise issues in femtosecond lasers,” Proc. SPIE4269, 170–177 (2001).
    [CrossRef]
  17. F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975).
    [CrossRef]
  18. M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
    [CrossRef]
  19. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett.37(6), 1005–1007 (2012).
    [CrossRef] [PubMed]
  20. M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968).
    [CrossRef]
  21. M. Thompson, “Low-Latency, High-speed Numerically Controlled Oscillator Using Progression-of-States Technique,” IEEE J. Solid-St. Circulation27, 113–117 (1992).
  22. L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1),” IEEE Signal Process. Mag.21(4), 50–54 (2004).
    [CrossRef]
  23. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
    [CrossRef]
  24. http://youtu.be/8XOGWFBGroc .
  25. http://youtu.be/JBkFEaoUQHQ

2012

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett.37(6), 1005–1007 (2012).
[CrossRef] [PubMed]

2011

2010

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

2009

V. Ahtee, M. Merimaa, and K. Nyholm, “Single-frequency synthesis at telecommunication wavelengths,” Opt. Express17(6), 4890–4896 (2009).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

2008

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
[CrossRef]

2006

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

2005

2004

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1),” IEEE Signal Process. Mag.21(4), 50–54 (2004).
[CrossRef]

2002

J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express10(12), 515–520 (2002).
[CrossRef] [PubMed]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
[CrossRef]

2001

F. L. Walls, “Phase noise issues in femtosecond lasers,” Proc. SPIE4269, 170–177 (2001).
[CrossRef]

2000

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

1992

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett.17(18), 1307–1309 (1992).
[CrossRef] [PubMed]

M. Thompson, “Low-Latency, High-speed Numerically Controlled Oscillator Using Progression-of-States Technique,” IEEE J. Solid-St. Circulation27, 113–117 (1992).

1981

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
[CrossRef]

1975

F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975).
[CrossRef]

1968

M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968).
[CrossRef]

Ahtee, V.

Alic, N.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

Baumann, E.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

Bernon, S.

Bertoldi, A.

Bitou, Y.

Bouyer, P.

Coddigton, I.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

Comte, M.

Cordesses, L.

L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1),” IEEE Signal Process. Mag.21(4), 50–54 (2004).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

DeMarchi, A.

F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975).
[CrossRef]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968).
[CrossRef]

Fainman, Y.

Fallnich, C.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

Giorgetta, F. R.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

Gobert, O.

Hall, J. L.

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968).
[CrossRef]

Haverkamp, N.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

Hergott, J. F.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hong, E. L.

Horiguchi, T.

Hundertmark, H.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

Inaba, H.

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
[CrossRef]

Jin, L.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
[CrossRef]

Jost, J. D.

Keller, U.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Kohlhaas, R.

Koyamada, Y.

Landragin, A.

Lepetit, F.

Lipphardt, B.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
[CrossRef]

Matsumoto, H.

Merimaa, M.

Minoshima, K.

Newbury, N. R.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

Nyholm, K.

Oliveira, P. D.

Onae, A.

Panasenko, D.

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

Paul, P. M.

Rokitski, R.

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Saperstein, R. E.

Schibli, T. R.

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
[CrossRef]

Shimizu, K.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

Stenger, J.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
[CrossRef]

Swann, W. C.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

Takizawa, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
[CrossRef]

Tcherbakoff, O.

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
[CrossRef]

Thompson, M.

M. Thompson, “Low-Latency, High-speed Numerically Controlled Oscillator Using Progression-of-States Technique,” IEEE J. Solid-St. Circulation27, 113–117 (1992).

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Vanderbruggen, T.

Viala, F.

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Walls, F. L.

F. L. Walls, “Phase noise issues in femtosecond lasers,” Proc. SPIE4269, 170–177 (2001).
[CrossRef]

F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975).
[CrossRef]

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

Ye, J.

Yonekura, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
[CrossRef]

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

Appl. Phys. B

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002).
[CrossRef]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004).
[CrossRef]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009).
[CrossRef]

IEEE J. Quantum Electron.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981).
[CrossRef]

M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012).
[CrossRef]

IEEE J. Solid-St. Circulation

M. Thompson, “Low-Latency, High-speed Numerically Controlled Oscillator Using Progression-of-States Technique,” IEEE J. Solid-St. Circulation27, 113–117 (1992).

IEEE Signal Process. Mag.

L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1),” IEEE Signal Process. Mag.21(4), 50–54 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas.

F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008).
[CrossRef]

Nat. Photonics

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Proc. SPIE

F. L. Walls, “Phase noise issues in femtosecond lasers,” Proc. SPIE4269, 170–177 (2001).
[CrossRef]

Other

H. R. Telle, “Absolute Measurement of Optical Frequencies,” in Frequency Control of Semiconductor Lasers, M. Ohtsu ed. (Wiley, 1996), Chap. 5, pp. 137.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, (Kluwer Academic Publishers / Springer, 2005), http://jila.colorado.edu/yelabs/pubs/scienceArticles/2005/sArticle_2005_YeCundiff_CombBook.pdf .

http://youtu.be/8XOGWFBGroc .

http://youtu.be/JBkFEaoUQHQ

Supplementary Material (2)

» Media 1: MOV (4054 KB)     
» Media 2: MOV (4041 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic building blocks of the frequency comb shifter.

Fig. 2
Fig. 2

Experimental setup. See text for details.

Fig. 3
Fig. 3

(a) Color-coded PD1 photocurrent showing the measured temporal evolution of the optical frequency comb. The overlaid green solid line shows the target temporal evolution of the frequency shift. (b) Video (Media 1) corresponding to (a), yellow: target frequency evolution, green: PD1, violet: PD2. A high-quality version of the video is available [24].

Fig. 4
Fig. 4

Frame from video of a linear frequency sweep showing optical (right) and beat photocurrent spectrum (left) of the shifted and unshifted combs along with the target frequency shift evolution (lower pane) (Media 2). A high-quality version of the video is available [25].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ν( t )= ν 0 +Δν( t )= ν 0 + 1 2π dϕ dt ,
Δϕ ΔT = φ m φ m1 ΔT ,
Δ ν m =Δν( t m )= φ m φ m1 2πΔT .
φ m =2πΔT k=1 m Δ ν k .
φ m =2πΔTΔνm,
φ m =( 2πΔT k=1 m Δ ν k )mod2π
φ( λ,E )=π n e 3 ( λ ) r 33 ( λ ) λ LE,
dν dt Δ ν max T = f rep 2 2N .

Metrics