Abstract

We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10−11 Hz−1 at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 1013 · f−1 Hz2/Hz in the 10 Hz < f < 105 Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10−8 at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20–25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of −6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2–3×10−11 at τ = 1 s and few 10−12 at τ = 104 s integration time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 257–354 (1996).
    [CrossRef]
  2. S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Y. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier B.V., 2010), 3, pp. 571–612.
  3. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
    [CrossRef]
  4. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett.27, 1472–1474 (2002).
    [CrossRef]
  5. R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.
  6. D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
    [CrossRef]
  7. A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
    [CrossRef]
  8. R. Michalzik, “VCSEL fundamentals,” Chap. 2 in VCSELs, R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 19–75.
  9. A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
    [CrossRef]
  10. A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
    [CrossRef]
  11. J. M. Ostermann and R. Michalzik, “Polarization control of VCSELs,” Chap. 5 in VCSELs,R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 147–179.
  12. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010).
    [CrossRef] [PubMed]
  13. R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B16, 1617–1622 (1999).
    [CrossRef]
  14. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.
  15. J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005).
    [CrossRef]
  16. D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
    [CrossRef]
  17. E. Rubiola, Phase Noise and Frequency Stability of Oscillators (Cambridge University, 2010), Chap. 1.
  18. X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012).
    [CrossRef]
  19. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B18, 1545–1553 (2001).
    [CrossRef]
  20. M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
    [CrossRef]
  21. D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
    [CrossRef]
  22. R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
    [CrossRef]
  23. O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
    [CrossRef]
  24. F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.
  25. M. Huang and J. Camparo, “The influence of laser polarization variations on CPT atomic clock signals,” in Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum (The Institute of Electrical and Electronics Engineers Inc., 2011), 951–954.

2012

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012).
[CrossRef]

2011

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
[CrossRef]

2010

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010).
[CrossRef] [PubMed]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

2006

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

2005

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005).
[CrossRef]

2002

2001

2000

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

1999

1996

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 257–354 (1996).
[CrossRef]

Affolderbach, C.

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Al-Samaneh, A.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 257–354 (1996).
[CrossRef]

Bimboes, L.

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Bou Sanayeh, M.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

Boudot, R.

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012).
[CrossRef]

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Camparo, J.

M. Huang and J. Camparo, “The influence of laser polarization variations on CPT atomic clock signals,” in Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum (The Institute of Electrical and Electronics Engineers Inc., 2011), 951–954.

Camparo, J. C.

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005).
[CrossRef]

Chutani, R. K.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Clatot, S.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

Coffer, J. G.

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005).
[CrossRef]

De Clercq, E.

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
[CrossRef]

Di Domenico, G.

Duwel, A.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Dziuban, P.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Emmons, D.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

English, T.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Galliou, S.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

Garvey, R. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

Geib, K. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

Giordano, V.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Gorecki, C.

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Gruet, F.

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Guérandel, S.

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
[CrossRef]

Hasegawa, M.

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

Hollberg, L.

Huang, M.

M. Huang and J. Camparo, “The influence of laser polarization variations on CPT atomic clock signals,” in Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum (The Institute of Electrical and Electronics Engineers Inc., 2011), 951–954.

Jung, C.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

Kern, A.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

Kitching, J.

Knappe, S.

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett.27, 1472–1474 (2002).
[CrossRef]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B18, 1545–1553 (2001).
[CrossRef]

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Y. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier B.V., 2010), 3, pp. 571–612.

Kozlova, O.

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
[CrossRef]

Leblanc, J.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

Liu, X.

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012).
[CrossRef]

Lutwak, R.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Mauri, L.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

Mescher, M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

Miah, M. J.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

Michalzik, R.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

J. M. Ostermann and R. Michalzik, “Polarization control of VCSELs,” Chap. 5 in VCSELs,R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 147–179.

R. Michalzik, “VCSEL fundamentals,” Chap. 2 in VCSELs, R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 19–75.

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Mileti, G.

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Miletic, D.

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Nagel, A.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B16, 1617–1622 (1999).
[CrossRef]

Ostermann, J. M.

J. M. Ostermann and R. Michalzik, “Polarization control of VCSELs,” Chap. 5 in VCSELs,R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 147–179.

Peake, G. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Rashed, A.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

Renz, S.

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

Riley, W.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Robinson, H. G.

Rubiola, E.

E. Rubiola, Phase Noise and Frequency Stability of Oscillators (Cambridge University, 2010), Chap. 1.

Schilt, S.

Schwarz, W.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

Serkland, D. K.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Stähler, M.

Strodl, A.

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

Taichenachev, A.

Tepolt, G.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

Thomann, P.

Varghese, M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

Wahl, D.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

Wiedenmann, D.

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

Wynands, R.

Yudin, V.

Appl. Opt.

Appl. Phys. B

C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000).
[CrossRef]

D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012).
[CrossRef]

Appl. Phys. Lett.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012).
[CrossRef]

Electron. Lett.

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011).
[CrossRef]

IEEE Trans. Instr. Meas.

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012).
[CrossRef]

J. Appl. Phys.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011).
[CrossRef]

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005).
[CrossRef]

Proc. SPIE

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006).
[CrossRef]

Prog. Opt.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 257–354 (1996).
[CrossRef]

Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE

A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010).
[CrossRef]

Sensors Actuat. A: Phys.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011).
[CrossRef]

Other

E. Rubiola, Phase Noise and Frequency Stability of Oscillators (Cambridge University, 2010), Chap. 1.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.

S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Y. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier B.V., 2010), 3, pp. 571–612.

J. M. Ostermann and R. Michalzik, “Polarization control of VCSELs,” Chap. 5 in VCSELs,R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 147–179.

R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.

R. Michalzik, “VCSEL fundamentals,” Chap. 2 in VCSELs, R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 19–75.

F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.

M. Huang and J. Camparo, “The influence of laser polarization variations on CPT atomic clock signals,” in Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum (The Institute of Electrical and Electronics Engineers Inc., 2011), 951–954.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Photograph of a fully processed VCSEL with a standard n-type substrate-side contact, suitable for wire bonding of the p-contact.

Fig. 2
Fig. 2

(a) Photograph of a fully processed flip-chip-bondable VCSEL with an inverted grating relief. (b) Zoomed outcoupling facet. (c) Surface profile within the grating relief region measured with an AFM. The grating relief has a diameter of 3 μm, a grating period of 0.6 μm, and an etch depth of 70 nm.

Fig. 3
Fig. 3

Schematic cross-section of the flip-chip bondable VCSEL with inverted grating relief. λ denotes the material wavelength.

Fig. 4
Fig. 4

Polarization-resolved operation characteristics of a standard VCSEL with 3 μm active diameter at 23°C substrate temperature. Ptot: total optical power; P||, P: optical powers for light polarized parallel and orthogonal to the reference axis, respectively; U: applied voltage.

Fig. 5
Fig. 5

Spectrum of the VCSEL from Fig. 4 at 2.1 mA current and 23°C substrate temperature.

Fig. 6
Fig. 6

Cs D1 absorption lines observed when transmitting the light of the VCSEL from Fig. 4 through a Cs vapor cell.

Fig. 7
Fig. 7

Polarization-resolved operation characteristics of a grating relief VCSEL with 3.6 μm active diameter at 30°C substrate temperature. The grating relief has a diameter of 3 μm, a grating period of 0.6 μm and an etch depth of 70 nm.

Fig. 8
Fig. 8

Polarization-resolved spectra of a grating relief VCSEL at 1.4 mA bias current.

Fig. 9
Fig. 9

Linewidth measurement of the VCSEL when operating at the Cs D1 line. The Fabry–Pérot linewidth is 5 MHz and the total sweeptime for this graph is 30 ms. The inset shows narrow saturated-absorption features of the Cs D1 line Fg = 4 component recorded in an evacuated Cs cell.

Fig. 10
Fig. 10

Relative intensity noise (RIN; red bottom trace) and frequency noise (black upper trace) of the VCSEL diode in free-running regime, operating in resonance with the Cs D1 line.

Fig. 11
Fig. 11

Normalized sideband power (filled symbols, left-hand axis) and corresponding modulation indices M and R and sideband asymmetry S (open symbols, right-hand axis) for different power levels of the 4.596 GHz modulation frequency applied to the VCSEL.

Fig. 12
Fig. 12

Allan deviation of the VCSEL frequency, in frequency-stabilized and free-running regimes. The VCSEL is locked to the center of a homogeneously broadened optical Cs absorption line.

Fig. 13
Fig. 13

Cs CPT clock experimental setup. CL: collimation lens; P: polarizer; QWP: quarter-wave plate. LA1 and LA2 are lock-in amplifiers.

Fig. 14
Fig. 14

CPT resonance line in the Cs–Ne microfabricated cell heated to 80°C. Experimental data are fitted by a Lorentzian profile. The resonance linewidth is 1.04 kHz and the contrast C is 0.93%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 [ 1 + R sin ( ω m t + Ψ ) ] cos ( ω 0 t + M sin ( ω m t ) )

Metrics