Abstract
We formulate coherence retrieval, the process of recovering via intensity measurements the twopoint correlation function of a partially coherent field, as a convex weighted leastsquares problem and show that it can be solved with a novel iterated descent algorithm using a coherentmodes factorization of the mutual intensity. This algorithm is more memoryefficient than the standard interior point methods used to solve convex problems, and we verify its feasibility by reconstructing the mutual intensity of a Schellmodel source from both simulated data and experimental measurements.
© 2013 OSA
Full Article  PDF ArticleOSA Recommended Articles
Zhengyun Zhang, Zhi Chen, Shakil Rehman, and George Barbastathis
Opt. Lett. 39(21) 61776180 (2014)
Jawad Elsayed Ahmad and Yoshitate Takakura
Opt. Express 16(18) 1427414287 (2008)
Liheng Bian, Jinli Suo, Guoan Zheng, Kaikai Guo, Feng Chen, and Qionghai Dai
Opt. Express 23(4) 48564866 (2015)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 M. Born and E. Wolf, Principles of optics, 7th. ed. (Cambridge University, 2005).

D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A 20, 290–295 (2003).
[Crossref]  M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref] [PubMed] 
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref] [PubMed] 
C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express 15, 13613–13623 (2007).
[Crossref] [PubMed] 
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref] [PubMed] 
B. J. Thompson and E. Wolf, “Twobeam interference with partially coherent light,” J. Opt. Soc. Am. 47, 895 (1957).
[Crossref]  H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]  Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]  L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]  T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref] 
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref] [PubMed] 
J. C. Barreiro and J. O.C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett. 18, 302–304 (1993).
[Crossref] [PubMed] 
H. Gamo, “Intensity matrix and degree of coherence,” J. Opt. Soc. Am. 47, 976–976 (1957).
[Crossref] 
H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
[Crossref]  S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).

E. Wolf, “New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steadystate sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
[Crossref]  E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O. 3, 35–43 (1969).
 A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. 15, 187–188 (1967).
[Crossref] 
A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974).
[Crossref]  K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
2012 (2)
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]
2007 (1)
C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express 15, 13613–13623 (2007).
[Crossref]
[PubMed]
2003 (1)
D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A 20, 290–295 (2003).
[Crossref]
2002 (1)
H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
[Crossref]
1995 (1)
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
1994 (1)
M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref]
[PubMed]
1993 (1)
J. C. Barreiro and J. O.C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett. 18, 302–304 (1993).
[Crossref]
[PubMed]
1988 (1)
Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]
1985 (1)
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref]
[PubMed]
1983 (1)
K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
1982 (1)
E. Wolf, “New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steadystate sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
[Crossref]
1980 (1)
H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]
1974 (1)
A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974).
[Crossref]
1972 (1)
T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref]
1969 (1)
E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O. 3, 35–43 (1969).
1967 (1)
A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. 15, 187–188 (1967).
[Crossref]
1957 (2)
Asakura, T.
T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref]
Barbastathis, G.
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
Barreiro, J. C.
J. C. Barreiro and J. O.C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett. 18, 302–304 (1993).
[Crossref]
[PubMed]
Bartelt, H. O.
H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]
Beck, M.
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref]
[PubMed]
Bengtsson, J.
C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express 15, 13613–13623 (2007).
[Crossref]
[PubMed]
Born, M.
M. Born and E. Wolf, Principles of optics, 7th. ed. (Cambridge University, 2005).
Boyd, S.
S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
Brenner, K.H.
K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]
Clarke, L.
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
Conner, M.
Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]
Dragoman, D.
D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A 20, 290–295 (2003).
[Crossref]
Eichmann, G.
Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]
Fleischer, J. W.
L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]
Fujii, H.
T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref]
Gamo, H.
H. Gamo, “Intensity matrix and degree of coherence,” J. Opt. Soc. Am. 47, 976–976 (1957).
[Crossref]
Kutay, M. A.
H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
[Crossref]
Lee, J.
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
Li, Y.
Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]
Lohmann, A. W.
K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]
Mayer, A.
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
McAlister, D.
M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref]
[PubMed]
McAlister, D. F.
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
Michalski, M.
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref]
[PubMed]
Murata, K.
T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref]
neda, J. O.C.
J. C. Barreiro and J. O.C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett. 18, 302–304 (1993).
[Crossref]
[PubMed]
Oh, S. B.
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
OjedaCastañeda, J.
K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
Ozaktas, H. M.
H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
[Crossref]
Papoulis, A.
A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974).
[Crossref]
Polak, E.
E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O. 3, 35–43 (1969).
Rabal, H. J.
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref]
[PubMed]
Raymer, M. G.
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref]
[PubMed]
Ribiere, G.
E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O. 3, 35–43 (1969).
Rydberg, C.
C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express 15, 13613–13623 (2007).
[Crossref]
[PubMed]
Schell, A. C.
A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. 15, 187–188 (1967).
[Crossref]
Sicre, E. E.
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref]
[PubMed]
Situ, G.
L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]
Thompson, B. J.
B. J. Thompson and E. Wolf, “Twobeam interference with partially coherent light,” J. Opt. Soc. Am. 47, 895 (1957).
[Crossref]
Tian, L.
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
Vandenberghe, L.
S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
Waller, L.
L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]
Wolf, E.
E. Wolf, “New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steadystate sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
[Crossref]
B. J. Thompson and E. Wolf, “Twobeam interference with partially coherent light,” J. Opt. Soc. Am. 47, 895 (1957).
[Crossref]
M. Born and E. Wolf, Principles of optics, 7th. ed. (Cambridge University, 2005).
Yüksel, S.
IEEE Trans. Antennas Propag. (1)
A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. 15, 187–188 (1967).
[Crossref]
J. Opt. Soc. Am. (4)
A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974).
[Crossref]
B. J. Thompson and E. Wolf, “Twobeam interference with partially coherent light,” J. Opt. Soc. Am. 47, 895 (1957).
[Crossref]
H. Gamo, “Intensity matrix and degree of coherence,” J. Opt. Soc. Am. 47, 976–976 (1957).
[Crossref]
E. Wolf, “New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steadystate sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
[Crossref]
J. Opt. Soc. Am. A (2)
H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
[Crossref]
D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A 20, 290–295 (2003).
[Crossref]
Nature Photon. (1)
L. Waller, G. Situ, and J. W. Fleischer, “Phasespace measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[Crossref]
Opt. Commun. (3)
H. O. Bartelt, K.H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
[Crossref]
Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun. 67, 177–179 (1988).
[Crossref]
K.H. Brenner, A. W. Lohmann, and J. OjedaCastañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983).
[Crossref]
Opt. Express (2)
C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express 15, 13613–13623 (2007).
[Crossref]
[PubMed]
L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express 20, 8296–8308 (2012).
[Crossref]
[PubMed]
Opt. Lett. (3)
D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phasespace tomography and fractionalorder Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
[Crossref]
[PubMed]
M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasimonochromatic spatially incoherent sources,” Opt. Lett. 10, 585–587 (1985).
[Crossref]
[PubMed]
J. C. Barreiro and J. O.C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett. 18, 302–304 (1993).
[Crossref]
[PubMed]
Optica Acta (1)
T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta 19, 273–290 (1972).
[Crossref]
Phys. Rev. Lett. (1)
M. G. Raymer, M. Beck, and D. McAlister, “Complex wavefield reconstruction using phasespace tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
[Crossref]
[PubMed]
Rev. Fr. Inform. Rech. O. (1)
E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O. 3, 35–43 (1969).
Other (2)
S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
M. Born and E. Wolf, Principles of optics, 7th. ed. (Cambridge University, 2005).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (15)
Optical arrangement that generates a Schellmodel beam. Uniform spatially incoherent quasimonochromatic light is used to illuminate an amplitude mask at the front focal plane (I) of a convex lens (II) with focal length
Using a convex lens, as shown in (a), we can capture both the image (I) and the Fourier transform intensity (II) of a partially coherent source located at (O) using a finitely deep focal stack. That is, the intensity at planes I and II correspond to the horizontal and vertical axes respectively of the ambiguity function (b), allowing more of the ambiguity function to be directly measured compared to a lensless approach.
Simulated noiseless data used as input to the factored form descent algorithm, visualized as focal stacks. The right image has been gammaboosted with
Simulated noisy data used as input to the factored form descent algorithm, visualized as focal stacks (top row) and gammaboosted focal stacks (bottom row).
Convergence of RMS error between the input intensity data set and the intensity computed from the current iterate of the mutual intensity in the factored form descent algorithm. Both the error axis and the iteration (time) axis are shown in log scale.
Convergence of RMS error between the theoretical mutual intensity and the current iterate of the mutual intensity. Both the error axis and the iteration (time) axis are shown in log scale.
At top is an image of the magnitude of the theoretical mutual intensity. Below the top image are three sets of images corresponding to three different uniform noise runs, with the left image being the magnitude of the resulting mutual intensity and the right image being the magnitude of the difference between the resulting mutual intensity and the theoretical mutual intensity.
Images corresponding to the runs using the Poisson shot noise data set
A plot of the energy contained in each mode after performing a coherence mode decomposition on the theoretical mutual intensity as well as the computed mutual intensity from each run. The horizontal axis gives the mode number on a log scale, with modes sorted by decreasing energy, and the vertical axis gives the energy on a log scale.
A plot of the magnitude of the field for the first five coherence modes of the theoretical mutual intensity as well as the computed mutual intensity from each run.
The data collected during the experiment, visualized as focal stacks (top row) and gammaboosted focal stacks (bottom row).
Convergence of RMS error between the input experimental data and the intensity computed from the current iterate of the mutual intensity in the factored form descent algorithm. Both the error axis and the iteration (time) axis are shown in log scale.
Images corresponding to the resulting mutual intensity computed by runs on the experimental data sets. The left column contains images of the magnitude of the mutual intensity and the right column contains images of the magnitude of the difference between the attained mutual intensity and the theoretical mutual intensity.
A plot of the energy contained in each mode after performing a coherence mode decomposition on the theoretical mutual intensity as well as the computed mutual intensity from each experimental run. The horizontal axis gives the mode number, with modes sorted by decreasing energy, and the vertical axis gives the energy on a log scale.
A plot of the magnitude of the field for the first five coherence modes of the theoretical mutual intensity as well as the computed mutual intensity from each run.
Tables (2)
Table 1 Algorithm Runs on Simulated Data
Table 2 Algorithm Runs on Experimental Data
Equations (19)
Equations on this page are rendered with MathJax. Learn more.