Abstract

We report a simple, broadband and high-absorbance coating for terahertz radiometry. The spectral properties of this coating in THz region were characterized with a home-made terahertz time-domain spectrometer. The measured spectral reflectance is less than 0.3% ranging from 0.2 THz to 0.5 THz and less than 0.1% ranging from 0.5 THz to 2.0 THz. We assembled a terahertz radiometer with this coating as absorber, and discussed its heat transfer in comparison with that of a carbon nanotube array radiometer. This coating is highly absorptive both in terahertz region and in visible light; therefore, the responsivity of this radiometer is easily traceable to National Laser Power Standards. This coating is easily fabricated. It is useful in traceability of terahertz sources and detectors to the SI units.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Optical methods for power measurement of terahertz radiation

Andreas Steiger, Berndt Gutschwager, Mathias Kehrt, Christian Monte, Ralf Müller, and Jörg Hollandt
Opt. Express 18(21) 21804-21814 (2010)

Traceable terahertz power measurement from 1 THz to 5 THz

Andreas Steiger, Mathias Kehrt, Christian Monte, and Ralf Müller
Opt. Express 21(12) 14466-14473 (2013)

Planar hyperblack absolute radiometer

John Lehman, Andreas Steiger, Nathan Tomlin, Malcolm White, Mathias Kehrt, Ivan Ryger, Michelle Stephens, Christian Monte, Ingmar Mueller, Joerg Hollandt, and Marla Dowell
Opt. Express 24(23) 25911-25921 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
    [Crossref] [PubMed]
  3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  5. L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
    [Crossref]
  6. S. M. Smith, “Specular reflectance of optical-black coatings in the far infrared,” Appl. Opt. 23(14), 2311–2326 (1984).
    [Crossref] [PubMed]
  7. A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18(21), 21804–21814 (2010).
    [Crossref] [PubMed]
  8. J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
    [Crossref] [PubMed]
  9. D. Grischkowsky, S. R. Keiding, M. Van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  10. “Terahertz time-domain spectroscopy,” (Wikipedia, 2013). http://en.wikipedia.org/wiki/Terahertz_time-domain_spectroscopy .
  11. Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
    [Crossref]
  12. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).
    [Crossref] [PubMed]
  13. M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
    [Crossref]

2012 (1)

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (1)

M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
[Crossref]

2002 (3)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1990 (1)

1988 (1)

1984 (1)

Alexander, R. W.

Bell, R. J.

Berry, E.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Cao, S.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Chamberlain, J. M.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Deng, Y.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Fattinger, Ch.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fitzgerald, A. J.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Grischkowsky, D.

Grossman, E. N.

Gutschwager, B.

Hofer, H.

M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
[Crossref]

Hollandt, J.

Hübers, H.-W.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Kehrt, M.

Keiding, S. R.

Kück, S.

M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
[Crossref]

Lee, B.

Lehman, J. H.

López, M.

M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
[Crossref]

Meindl, P.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Monte, C.

Müller, R.

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18(21), 21804–21814 (2010).
[Crossref] [PubMed]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Newquist, L. A.

Ordal, M. A.

Querry, M. R.

Richter, H.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Smith, M. A.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Smith, S. M.

Steiger, A.

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18(21), 21804–21814 (2010).
[Crossref] [PubMed]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Sun, Q.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Van Exter, M.

Walker, G. C.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Wang, C.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Werner, L.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Yu, J.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Z.

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Zinovev, N. N.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Appl. Opt. (3)

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Metrologia (3)

M. López, H. Hofer, and S. Kück, “Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared,” Metrologia 42(5), 400–405 (2005).
[Crossref]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46(4), S160–S164 (2009).
[Crossref]

Y. Deng, Q. Sun, S. Cao, J. Yu, C. Wang, and Z. Zhang, “Accurate and automatic characterization of femtosecond optical pulses,” Metrologia 49(2), S39–S42 (2012).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (1)

Phys. Med. Biol. (1)

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002).
[Crossref] [PubMed]

Other (1)

“Terahertz time-domain spectroscopy,” (Wikipedia, 2013). http://en.wikipedia.org/wiki/Terahertz_time-domain_spectroscopy .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of reflection-type THz spectrometer. HWP: Half-wave plate; PBS: Polarizing beam splitter; PCA: Photoconductive antenna; THz BS: THz beam splitter; ZnTe: zinc telluride crystal; QWP: Quarter-wave plate; HDPE lens: high density polyethylene lens.

Fig. 2
Fig. 2

Measured referred THz waveform and its Fourier-transformed spectrum. (a) Measured referred THz waveform and noise waveform, (b) referred THz spectrum and noise spectrum obtained with Fourier transform.

Fig. 3
Fig. 3

Measured THz reflectances of graphite, home-made graphite paste, SiC, and 3M Velvet-coating.

Fig. 4
Fig. 4

Measured spectral reflectances of VANTA and three scales of SiC particles mixed coatings (plotted on logarithmic scale).

Fig. 5
Fig. 5

Schematic of THz radiometer.

Fig. 6
Fig. 6

Schematics of heat transfer in VANTA absorber and in SiC particles coating absorber of THz radiometer. (a) In VANTA absorber, (b) in SiC particles coating absorber.

Metrics