Abstract

We present a laser system capable of producing 190 femtosecond pulses at a repetition rate of 20 GHz. The spectral masking of a phase modulated diode laser is used to produce a train of picosecond pulses which are compressed using a fibre-grating compressor followed by subsequent adiabatic soliton compression to the femtosecond regime using a tapered photonic crystal fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  2. N. G. Usechak, G. P. Agrawal, and J. D. Zuegel, “Tunable, high-repetition-rate, harmonically mode-locked ytterbium fiber laser,” Opt. Lett. 29, 1360–1362 (2004).
    [Crossref] [PubMed]
  3. R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Ytterbium gain band self-induced modulation instability laser,” Opt. Lett. 31, 167–168 (2006).
    [Crossref] [PubMed]
  4. P. V. Mamyshev, “Dual-wavelength source of high-repetition-rate, transform-limited optical pulses for soliton transmission,” Opt. Lett. 19, 2074–2076 (1994).
    [Crossref] [PubMed]
  5. A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
    [Crossref]
  6. B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
    [Crossref]
  7. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
    [Crossref]
  8. B. H. Chapman, A. V. Doronkin, S. V. Popov, and J. R. Taylor, “All-fiber integrated 10 GHz repetition rate femtosecond laser source based on Raman compression of pulses generated through spectral masking of a phase-modulated diode,” Opt. Lett. 37, 3099–3101 (2012).
    [Crossref] [PubMed]
  9. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
    [Crossref] [PubMed]

2012 (1)

2007 (1)

2006 (1)

2004 (1)

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

1994 (1)

1986 (1)

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Agrawal, G. P.

Avramopoulos, H.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Blumenthal, D.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

Chapman, B. H.

Cumberland, B. A.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Doronkin, A. V.

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

George, A. K.

Gomes, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Gouveia-Neto, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Kennedy, R. E.

Knight, J. C.

Mamyshev, P. V.

New, G.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Ohlen, P.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

Olsson, B.-E.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

Popov, S. V.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Rau, L.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

Rulkov, A. B.

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Stolen, R. H.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Stone, J. M.

Taylor, J.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Taylor, J. R.

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Travers, J. C.

Usechak, N. G.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Zuegel, J. D.

Appl. Phys. Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]

Opt. Commun. (1)

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun. 59, 399–404 (1986).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the principle of operation for the SMPM scheme. A sinusiodal phase shift (top) causes an instantaneous shift to the optical frequency (middle) upon which a spectral mask is applied using a band pass filter, the absorption of which is represented by the hatched area. This leads to the generation of short pulses (bottom).

Fig. 2
Fig. 2

System set-up. Key to acronyms - LD: Laser diode, LNPM: Lithium niobate phase modulator, BPF: Band pass filter, PC: Polarization controller, YDFA: Ytterbium doped fiber amplifier, SMF: Single mode fiber, DDPCF: Dispersion decreasing photonic crystal fiber.

Fig. 3
Fig. 3

(a) Optical spectrum of phase modulated output before (gray) and after (black) spectral masking using a band pass filter. (b) Intensity autocorrelation of output pulses after spectral masking on the phase modulated signal. A Gaussian fit implies a deconvolved FWHM duration of 9.0 ps.

Fig. 4
Fig. 4

(a) Optical spectrum of the signal after amplification and spectral broadening in single mode fiber. (b) Intensity autocorrelations of pulse output from the SMF in the fiber-grating compressor before (gray) and after (black) chirp compensation using the grating pair. Also shown are associated deconvolved FWHM pulse durations implied by autocorrelations.

Fig. 5
Fig. 5

Left: Dispersion curves for the input and output end of the dispersion decreasing PCF used in the adiabatic soliton compression stage. Right: SEM images of the input and output ends of the PCF.

Fig. 6
Fig. 6

(a) Optical spectrum of output from DDPCF compression stage. Inset shows zoomed-in section, revealing comb lines spaced at 20 GHz. (b) Intensity autocorrelation of output pulses from DDPCF compression stage. A sech2 fit implies a deconvolved FWHM duration of 190 fs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 0 = 2 | β 2 | γ E
z 0 = 2 π | β 2 | γ 2 E 2 .

Metrics