Abstract

We present a laser system capable of producing 190 femtosecond pulses at a repetition rate of 20 GHz. The spectral masking of a phase modulated diode laser is used to produce a train of picosecond pulses which are compressed using a fibre-grating compressor followed by subsequent adiabatic soliton compression to the femtosecond regime using a tapered photonic crystal fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
    [CrossRef] [PubMed]
  2. N. G. Usechak, G. P. Agrawal, and J. D. Zuegel, “Tunable, high-repetition-rate, harmonically mode-locked ytterbium fiber laser,” Opt. Lett.29, 1360–1362 (2004).
    [CrossRef] [PubMed]
  3. R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Ytterbium gain band self-induced modulation instability laser,” Opt. Lett.31, 167–168 (2006).
    [CrossRef] [PubMed]
  4. P. V. Mamyshev, “Dual-wavelength source of high-repetition-rate, transform-limited optical pulses for soliton transmission,” Opt. Lett.19, 2074–2076 (1994).
    [CrossRef] [PubMed]
  5. A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
    [CrossRef]
  6. B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
    [CrossRef]
  7. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
    [CrossRef]
  8. B. H. Chapman, A. V. Doronkin, S. V. Popov, and J. R. Taylor, “All-fiber integrated 10 GHz repetition rate femtosecond laser source based on Raman compression of pulses generated through spectral masking of a phase-modulated diode,” Opt. Lett.37, 3099–3101 (2012).
    [CrossRef] [PubMed]
  9. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express15, 13203–13211 (2007).
    [CrossRef] [PubMed]

2012 (1)

2007 (1)

2006 (1)

2004 (1)

2000 (2)

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

1994 (1)

1986 (1)

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

Agrawal, G. P.

Avramopoulos, H.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Blumenthal, D.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

Chapman, B. H.

Cumberland, B. A.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Doronkin, A. V.

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

George, A. K.

Gomes, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Gouveia-Neto, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Kennedy, R. E.

Knight, J. C.

Mamyshev, P. V.

New, G.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Ohlen, P.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

Olsson, B.-E.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

Popov, S. V.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Rau, L.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

Rulkov, A. B.

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Stolen, R. H.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

Stone, J. M.

Taylor, J.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Taylor, J. R.

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

Travers, J. C.

Usechak, N. G.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

Zuegel, J. D.

Appl. Phys. Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett.40, 761–763 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett.12, 846–848 (2000).
[CrossRef]

Opt. Commun. (1)

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, “Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses,” Opt. Commun.59, 399–404 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the principle of operation for the SMPM scheme. A sinusiodal phase shift (top) causes an instantaneous shift to the optical frequency (middle) upon which a spectral mask is applied using a band pass filter, the absorption of which is represented by the hatched area. This leads to the generation of short pulses (bottom).

Fig. 2
Fig. 2

System set-up. Key to acronyms - LD: Laser diode, LNPM: Lithium niobate phase modulator, BPF: Band pass filter, PC: Polarization controller, YDFA: Ytterbium doped fiber amplifier, SMF: Single mode fiber, DDPCF: Dispersion decreasing photonic crystal fiber.

Fig. 3
Fig. 3

(a) Optical spectrum of phase modulated output before (gray) and after (black) spectral masking using a band pass filter. (b) Intensity autocorrelation of output pulses after spectral masking on the phase modulated signal. A Gaussian fit implies a deconvolved FWHM duration of 9.0 ps.

Fig. 4
Fig. 4

(a) Optical spectrum of the signal after amplification and spectral broadening in single mode fiber. (b) Intensity autocorrelations of pulse output from the SMF in the fiber-grating compressor before (gray) and after (black) chirp compensation using the grating pair. Also shown are associated deconvolved FWHM pulse durations implied by autocorrelations.

Fig. 5
Fig. 5

Left: Dispersion curves for the input and output end of the dispersion decreasing PCF used in the adiabatic soliton compression stage. Right: SEM images of the input and output ends of the PCF.

Fig. 6
Fig. 6

(a) Optical spectrum of output from DDPCF compression stage. Inset shows zoomed-in section, revealing comb lines spaced at 20 GHz. (b) Intensity autocorrelation of output pulses from DDPCF compression stage. A sech2 fit implies a deconvolved FWHM duration of 190 fs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 0 = 2 | β 2 | γ E
z 0 = 2 π | β 2 | γ 2 E 2 .

Metrics