Abstract

We simultaneously investigate the four-wave mixing and the fluorescence signals via two cascade electromagnetically induced transparency (EIT) systems in atomic rubidium vapor. By manipulating the deflection angle between the probe beam and certain coupling beams, the dark state can extraordinarily switch to bright state, induced by the angle-modulation on the dressing effect. Besides, in the fluorescence signal, the peak of two-photon fluorescence due to classical emission and the dip of single-photon fluorescence due to dressing effect are distinguished, both in separate spectral curves and in the global profile of spectrum. Meanwhile, we observe and analyze the similarities and discrepancies between the two ground-state hyperfine levels F = 2 and F = 3 of Rb 85 for the first time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
    [CrossRef] [PubMed]
  2. N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
    [CrossRef] [PubMed]
  3. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
    [CrossRef]
  4. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  5. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
    [CrossRef] [PubMed]
  6. S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
    [CrossRef]
  7. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
    [CrossRef]
  8. Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett.21(14), 1064–1066 (1996).
    [CrossRef] [PubMed]
  9. Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
    [CrossRef] [PubMed]
  10. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
    [CrossRef] [PubMed]
  11. J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
    [CrossRef]
  12. J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
    [CrossRef]
  13. R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
    [CrossRef] [PubMed]
  14. C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
    [CrossRef]
  15. Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
    [CrossRef]
  16. U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
    [CrossRef]
  17. P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).
  18. M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
    [CrossRef]
  19. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
    [CrossRef]
  20. U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
    [CrossRef] [PubMed]
  21. O. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am.51(10), 1058–1061 (1961).
    [CrossRef]

2012 (2)

2011 (2)

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

2010 (1)

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

2009 (1)

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

2008 (1)

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

2007 (2)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

2006 (2)

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

2004 (1)

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

1999 (1)

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

1998 (2)

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

1996 (1)

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

1987 (1)

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

1961 (1)

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Ben-Kish, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Carvalho, P. R. S.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Chen, H.

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

de Araujo, L.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Fu, G.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Fu, P.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Gaeta, A.

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Heavens, O.

Jia, S.

Jiang, Q.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Khadka, U.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

Lazarov, G.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Li, C.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Li, L.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Li, N.

Li, P.

Li, Y.

N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Li, Y. Q.

Liu, X.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Lyyra, A. M.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Malcuit, M. S.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Narducci, L. M.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Nie, Z.

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Qi, J.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Rzaewski, K.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Sang, S.

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Song, J.

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Spano, F. C.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Sun, J.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Tabosa, J. W. R.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Wang, X.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Wang, Z.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

Wen, F.

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

Wielandy, S.

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

Wu, L. A.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Wu, Z.

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett.21(14), 1064–1066 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yang, Y.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Zhang, R.

Zhang, Y.

N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Zhao, Y.

Zhao, Z.

Zheng, H.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Zhou, G.

Zuo, Z.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

J. Mod. Opt. (1)

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (8)

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Relevant four-level Y-type atomic system with one probe field E 1 , two coupling fields E 2 and E 2 , and another two coupling fields E 3 and E 3 . E F1 and E F2 are the generated FWM signals. R 0 , R 1 and R 2 are the generated fluorescence signals. (b) Normal phase-matching spatial beam geometry. (c)-(e) The abnormal propagation configurations for the ladder type subsystem and Y-type system, with the deflection angles α and β. The dash lines in (c)-(e) represent the direction of beams when the deflection angles equal 0 .

Fig. 2
Fig. 2

(a)-(c) Measured signals versus Δ 2 at discrete probe detuning Δ 1 and discrete deflection angle α, the ground-state is 5 S 1/2 F=3. The top curves ((a1)-(a4)) are probe transmission; the middle curves ((b1)-(b4)) are FWM signal; and the bottom curves ((c1)-(c4)) are fluorescence signal. The experimental parameters are P 1 =8mW, P 2 =10mW and P 2 =10mW. (d1)-(d3) Calculated probe transmission versus α at three typical detunings.

Fig. 3
Fig. 3

(a)-(c) Measured signals versus Δ 2 at discrete Δ 1 and α, the ground state is 5 S 1/2 F=2. The experimental parameters are the same as Fig. 2. (d1)-(d2) Magnified sub-graphs for 5 S 1/2 F=3 and F=2 of 85 Rb. (e) Realistic energy level diagram showing the hyperfine levels of each driven state, where the FWM transitions with the least number of decay channels are presented.

Fig. 4
Fig. 4

(a) and (c) Measured probe transmission (top curves), FWM signal E F1 (middle curves), and fluorescence signal (bottom curves) versus Δ 2 at discrete Δ 3 , with fixed Δ 1 =0MHz and E 3 blocked. For (a1)-(a3) α=0.04 , and for (c1)-(c3) α=0.16 . The other parameters are P 1 =7.8mW, P 2 =6.9mW, P 2 =15.9mW and P 3 =46.0mW. (b) and (d) The calculated curves corresponding to (a) and (c) respectively. (e) The corresponding dressed state diagrams with typical Δ 3 values.

Fig. 5
Fig. 5

(a) and (c) Measured probe transmission (top curves), FWM signal E F1 (middle curves), and fluorescence signals (bottom curves) versus Δ 2 at discrete Δ 3 , with α=0.16 , E 3 blocked and Δ 1 fixed at Δ 1 =0MHz for (a) and Δ 1 =150MHz for (c). The other parameters are P 1 =4mW, P 2 =12.6mW, P 2 =6.3mW and P 3 =40mW. (b) and (d) Calculated fluorescence signals corresponding to (a3) and (c3) separately.

Fig. 6
Fig. 6

Measured probe transmission (top curves), FWM (middle curves) and fluorescence (bottom curves) versus Δ 1 when all the beams are turned on. The coupling detuning Δ 2 is set at 80MHz ((a1) and (b1)), 60MHz ((a2) and (b2)), 40MHz ((a3) and (b3)), and 150MHz ((a4) and (b4)); Δ 3 is fixed at Δ 3 =60MHz. α is set at α=0 for (a1)-(a4), and α=0.12 for (b1)-(b4). The other experimental parameters are P 1 =8.2mW, P 2 =18.3mW, P 2 =9.6mW, P 3 =29.0mW, and P 3 =25.0mW.

Fig. 7
Fig. 7

Measured probe transmission ((a1) and (b1)), FWM signal E F1 with enhancement and suppression ((a2) and (b2)), and fluorescence signal ((a3) and (b3)) versus Δ 3 at discrete Δ 1 , with fixed Δ 2 =100MHz and E 3 blocked. The deflection angle β is β=0 for (a1)-(a3), and β=0.12 for (b1)-(b3). The other experimental parameters are P 1 =4.5mW, P 2 =12.9mW, P 2 =8.2mW and P 3 =29.0mW.

Fig. 8
Fig. 8

Measured probe transmission ((a1) and (b1)), the enhancement and suppression of FWM signal E F1 ((a2) and (b2)), and fluorescence ((a3) and (b3)) versus Δ 3 with β=0. 04 , 0 , 0. 04 , 0. 08 , 0. 12 and 0. 16 from top to bottom. (a) and (b) are separately the signals obtained at left peak and right peak of the FWM double-peak profile. The other parameters are P 1 =3.6mW, P 2 =30.6mW, P 2 =5.4mW and P 3 =14.0mW.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ 10 (1) =i G 1 / d 1 ,
ρ 10SD (1) =i G 1 /( d 1 + | G 2 | 2 / d 2 ),
ρ 10DD (1) =i G 1 /( d 1 + | G 2 | 2 / d 2 + | G 3 | 2 / d 3 ),
ρ F1DD (3) =i G 1 G 2 ( G 2 ) * /[ ( d 1 + | G 2 | 2 / d 2 + | G 3 | 2 / d 3 ) 2 d 2 ]
ρ F2DD (3) =i G 1 G 3 ( G 3 ) * /[ ( d 1 + | G 2 | 2 / d 2 + | G 3 | 2 / d 3 ) 2 d 3 ]
ρ 11 (2) = | G 1 | 2 /( Γ 11 d 1 ).
ρ 11SD (2) = | G 1 | 2 /[ Γ 11 ( d 1 + | G 2 | 2 / d 2 )],
ρ 11DD (2) = | G 1 | 2 /[ Γ 11 ( d 1 + | G 2 | 2 / d 2 + | G 3 | 2 / d 3 )].
ρ 22 (4) = G 1 2 G 2 2 /( Γ 22 d 1 d 2 d 4 )
ρ 22SD (4) = | G 1 | 2 | G 2 | 2 /[ Γ 22 d 1 d 4 ( d 2 + | G 2 | 2 / d 1 )].
ρ 33 (4) = | G 1 | 2 | G 3 | 2 /( Γ 33 d 1 d 5 d 3 ),
ρ 33SD (4) = | G 1 | 2 | G 3 | 2 /[ Γ 33 d 1 d 5 ( d 3 + | G 3 | 2 / d 1 )]

Metrics