Abstract

We simultaneously investigate the four-wave mixing and the fluorescence signals via two cascade electromagnetically induced transparency (EIT) systems in atomic rubidium vapor. By manipulating the deflection angle between the probe beam and certain coupling beams, the dark state can extraordinarily switch to bright state, induced by the angle-modulation on the dressing effect. Besides, in the fluorescence signal, the peak of two-photon fluorescence due to classical emission and the dip of single-photon fluorescence due to dressing effect are distinguished, both in separate spectral curves and in the global profile of spectrum. Meanwhile, we observe and analyze the similarities and discrepancies between the two ground-state hyperfine levels F = 2 and F = 3 of Rb 85 for the first time.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
    [CrossRef] [PubMed]
  2. N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
    [CrossRef] [PubMed]
  3. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
    [CrossRef]
  4. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  5. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
    [CrossRef] [PubMed]
  6. S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
    [CrossRef]
  7. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
    [CrossRef]
  8. Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett.21(14), 1064–1066 (1996).
    [CrossRef] [PubMed]
  9. Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
    [CrossRef] [PubMed]
  10. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
    [CrossRef] [PubMed]
  11. J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
    [CrossRef]
  12. J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
    [CrossRef]
  13. R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
    [CrossRef] [PubMed]
  14. C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
    [CrossRef]
  15. Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
    [CrossRef]
  16. U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
    [CrossRef]
  17. P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).
  18. M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
    [CrossRef]
  19. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
    [CrossRef]
  20. U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
    [CrossRef] [PubMed]
  21. O. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am.51(10), 1058–1061 (1961).
    [CrossRef]

2012 (2)

2011 (2)

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

2010 (1)

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

2009 (1)

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

2008 (1)

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

2007 (2)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

2006 (2)

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

2004 (1)

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

1999 (1)

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

1998 (2)

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

1996 (1)

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

1987 (1)

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

1961 (1)

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Ben-Kish, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Carvalho, P. R. S.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Chen, H.

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

de Araujo, L.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Fu, G.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Fu, P.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Gaeta, A.

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Heavens, O.

Jia, S.

Jiang, Q.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Khadka, U.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

Lazarov, G.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

Li, C.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Li, L.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Li, N.

Li, P.

Li, Y.

N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Li, Y. Q.

Liu, X.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Lyyra, A. M.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Malcuit, M. S.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Narducci, L. M.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Nie, Z.

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Qi, J.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Rzaewski, K.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Sang, S.

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Song, J.

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Spano, F. C.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Sun, J.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Tabosa, J. W. R.

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

Wang, X.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

Wang, Z.

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

Wen, F.

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

Wielandy, S.

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

Wu, L. A.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Wu, Z.

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett.21(14), 1064–1066 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yang, Y.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Zhang, R.

Zhang, Y.

N. Li, Z. Zhao, H. Chen, P. Li, Y. Li, Y. Zhao, G. Zhou, S. Jia, and Y. Zhang, “Observation of dressed odd-order multi-wave mixing in five-level atomic medium,” Opt. Express20(3), 1912–1929 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

Zhao, Y.

Zhao, Z.

Zheng, H.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express20(6), 6204–6214 (2012).
[CrossRef] [PubMed]

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

C. Li, Y. Zhang, H. Zheng, Z. Wang, H. Chen, S. Sang, R. Zhang, Z. Wu, L. Li, and P. Li, “Controlling cascade dressing interaction of four-wave mixing image,” Opt. Express19(14), 13675–13685 (2011).
[CrossRef] [PubMed]

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

Zhou, G.

Zuo, Z.

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Li, H. Zheng, Y. Zhang, Z. Nie, J. Song, and M. Xiao, “Observation of enhancement and suppression of four-wave mixing processes,” Appl. Phys. Lett.95(4), 041103 (2009).
[CrossRef]

J. Mod. Opt. (1)

Z. Wang, Y. Zhang, H. Zheng, C. Li, F. Wen, and H. Chen, “Switching enhancement and suppression of four-wave mixing via a dressing field,” J. Mod. Opt.58(9), 802–809 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (8)

S. Wielandy and A. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A58(3), 2500–2505 (1998).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998).
[CrossRef]

U. Khadka, Y. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A81(2), 023830 (2010).
[CrossRef]

P. R. S. Carvalho, L. de Araujo, and J. W. R. Tabosa, “Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor,” Phys. Rev. A70(6), 063818 (2004).

M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, “Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances,” Phys. Rev. A76(2), 023813 (2007).
[CrossRef]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A77(6), 063829 (2008).
[CrossRef]

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A73(4), 043810 (2006).
[CrossRef]

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzaewski, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A35(4), 1648–1658 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007).
[CrossRef] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett.83(2), 288–291 (1999).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett.74(5), 670–673 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics