Abstract

It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
    [CrossRef] [PubMed]
  2. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
    [CrossRef] [PubMed]
  3. V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010).
    [CrossRef] [PubMed]
  4. J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
    [CrossRef]
  5. S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
    [CrossRef] [PubMed]
  6. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
    [CrossRef] [PubMed]
  7. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
    [CrossRef]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  9. M. Achermann, “Exciton-plasmon interactions in metal-semiconductor nanostructures,” J. Phys. Chem. Lett.1(19), 2837–2843 (2010).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  11. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
    [CrossRef] [PubMed]
  12. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009).
    [CrossRef]
  13. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
    [CrossRef] [PubMed]
  14. S. M. Sadeghi, “Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules,” IEEE Trans. Nanobioscience10, 566–571 (2011).
  15. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
    [CrossRef] [PubMed]
  16. H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., 1951).
  17. P. Michler, ed., Single Semiconductor Quantum Dots (Springer, 2009).
  18. O. Marlan, Scully and M. S. Zubairy, Quantum Optics (Cambridge, 1997).
  19. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
    [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  21. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008).
    [CrossRef]
  22. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
    [CrossRef] [PubMed]
  23. Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
    [CrossRef] [PubMed]
  24. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
    [CrossRef]
  25. P. Guyot-Sionnest, X. Peng, and D. Mingos, Intraband Spectroscopy and Semiconductor Nanocrystals Semiconductor Nanocrystals and Silicate Nanoparticles (Springer Berlin / Heidelberg, 2005), pp. 59–77.
  26. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  27. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
    [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008).
    [CrossRef] [PubMed]
  29. H. Hartmut and W. K. Stephan, Quantum Theory of The Optical And Electronic Properties Of Semiconductors (World Scientific, 2004).
  30. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
    [CrossRef] [PubMed]
  31. I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
    [CrossRef] [PubMed]
  32. J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
    [CrossRef] [PubMed]
  33. R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
    [CrossRef]

2012 (2)

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
[CrossRef] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
[CrossRef] [PubMed]

2011 (5)

S. M. Sadeghi, “Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules,” IEEE Trans. Nanobioscience10, 566–571 (2011).

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

2010 (3)

M. Achermann, “Exciton-plasmon interactions in metal-semiconductor nanostructures,” J. Phys. Chem. Lett.1(19), 2837–2843 (2010).
[CrossRef]

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010).
[CrossRef] [PubMed]

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

2009 (3)

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

2008 (6)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
[CrossRef] [PubMed]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008).
[CrossRef]

2007 (4)

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

2005 (1)

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

1999 (1)

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Achermann, M.

M. Achermann, “Exciton-plasmon interactions in metal-semiconductor nanostructures,” J. Phys. Chem. Lett.1(19), 2837–2843 (2010).
[CrossRef]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

Ajjan, K. B.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Artuso, R. D.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Asano, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Bryant, G. W.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Bulovic, V.

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010).
[CrossRef] [PubMed]

Chandrasekaran, J.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Chang, J. C.

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Clapp, A. R.

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Deng, Z.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Ding, B.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

English, D. S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Englund, D.

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Faraon, A.

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Govorov, A. O.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

Grimes, A. F.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Halas, N. J.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

Hatef, A.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hernandez, P.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

Higashiya, S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Higemoto, W.

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

Hohenester, U.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kadono, R.

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Kojima, K.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Kojima, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Kotov, N. A.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

Kovtun, O.

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

Kumar, S.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Lee, J.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

Lin, S.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Liu, X.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Liu, Y.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Manoharan, D.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Maruthamuthu, S.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Mattoussi, H.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

McBride, J. R.

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

Medintz, I. L.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Meissner, K. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
[CrossRef] [PubMed]

Nagamine, K.

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

Naik, R. R.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

Nakamura, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Nithyaprakash, D.

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Noda, S.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
[CrossRef] [PubMed]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Pons, T.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Pratt, F. L.

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

Ros, R.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Rosenthal, S. J.

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

Sadeghi, S. M.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
[CrossRef] [PubMed]

S. M. Sadeghi, “Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules,” IEEE Trans. Nanobioscience10, 566–571 (2011).

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009).
[CrossRef]

Sapsford, K. E.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Schulz, O.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Singh, M. R.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
[CrossRef] [PubMed]

Slocik, J. M.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Tam, F.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

Toishi, M.

Tomlinson, I. D.

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

Trügler, A.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008).
[CrossRef]

Vuckovic, J.

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Wei, X.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Welch, J. T.

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Wood, V.

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010).
[CrossRef] [PubMed]

Yan, H.

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

Yan, J.-Y.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, W.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhao, X.-G.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008).
[CrossRef] [PubMed]

Chem. Biol. (1)

S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011).
[CrossRef] [PubMed]

IEEE Trans. Nanobioscience (1)

S. M. Sadeghi, “Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules,” IEEE Trans. Nanobioscience10, 566–571 (2011).

J. Am. Chem. Soc. (1)

Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

M. Achermann, “Exciton-plasmon interactions in metal-semiconductor nanostructures,” J. Phys. Chem. Lett.1(19), 2837–2843 (2010).
[CrossRef]

Nano Lett. (3)

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Nano Rev (1)

V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007).
[CrossRef] [PubMed]

Nature (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (7)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011).
[CrossRef]

Science (1)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Other (5)

H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., 1951).

P. Michler, ed., Single Semiconductor Quantum Dots (Springer, 2009).

O. Marlan, Scully and M. S. Zubairy, Quantum Optics (Cambridge, 1997).

H. Hartmut and W. K. Stephan, Quantum Theory of The Optical And Electronic Properties Of Semiconductors (World Scientific, 2004).

P. Guyot-Sionnest, X. Peng, and D. Mingos, Intraband Spectroscopy and Semiconductor Nanocrystals Semiconductor Nanocrystals and Silicate Nanoparticles (Springer Berlin / Heidelberg, 2005), pp. 59–77.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of the hybrid system (QD–AuNR) unit. The arrow on top shows the Förster resonance energy transfer (FRET) rate between QD and AuNR. The dipole-dipole coupling is due to an applied external field which induces a polarization on both the AuNR and the QD. The external (E) field is perpendicular to the QD-AuNR axis. (b) Schematic illustration of the two-level QD (left) upper excitonic ( |2 ) and ground state ( |1 ). The shaded area shows the energy band of the AuNR (right) where the dark strip shows the broden plasmon resonance energy peak. The transition energy of QD is matched with the resonance energy of Au nanorod.

Fig. 2
Fig. 2

(a) The maximum filed enhancement on the tips of a prolate spheroid versus the aspect ratio (q) and the incident laser energy, (b) Cross-section of the electric field enhancement distribution in and around a AuNR, for q = 4 when irradiated with a ω 0 = 1.6eV ( = 775 nm) linearly polarized along the ellipsoid’s longitudinal axis. The legend on the right shows the values of the field enhancement.

Fig. 3
Fig. 3

The coherent–plasmonic field enhancement (CPFE) versus the background dielectric constant ( ε b ) with I = 64.3 W/cm2 and R = 21 nm. The solid, dash-dotted and dotted curve shows Δ 12 = 0, 5 and 10 ns−1, respectively. The dashed line shows the case when the particles are far from each other (R = 100 nm).

Fig. 4
Fig. 4

(a) The exciton transition energy shift ( η Re Δ ρ ) and (b) Förster enhanced broadening factor ( η Im Δ ρ ) versus center-to-center parameter (R) for Δ 21 = 0. The solid, dotted and the dashed curve shows ε b = 1.8, 1.825 and 1.85, respectively. The insets show the same quantities for each case where Δ 21 = 600 ns−1.

Fig. 5
Fig. 5

(a) The exciton transition energy shift ( η Re Δ ρ ) and (b) Förster enhanced broadening factor ( η Im Δ ρ ) versus the laser detuning parameter ( Δ 21 ).

Fig. 6
Fig. 6

(a) The Re( ρ 21 ) and (b) Im( ρ 21 ) versus the laser detuning parameter ( Δ 21 ) The solid, dotted and the dashed curve shows ε b = 1.8, 1.825 and 1.85, respectively. The insets show the same quantities for each case where for R = 100 nm, where the nano-particles are far from each other.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

κ= 1 e 2 e 2 [ 1 2e ln( 1+e 1e )1 ]
E QD = E 0 2 ε eff [ 1 a b 2 β(ω) R 3 ]+ a b 2 P QD 4π ε 0 μ ε eff 2 R 6
d Δ ρ dt = Γ 21 (1+ Δ ρ )+2i( Ω 12 r ρ 12 Ω 12 *r ρ 21 )
d ρ 21 dt =(i Δ 12 + γ 21 ) ρ 21 i Ω 12 r Δ ρ
η= a b 2 β(ω)μ / 4π ε 0 ε b ε eff 2 R 6
P z coh (ω)= | Ω 12 r Ω 12 0 | 2
d ρ 21 dt =[i( Π 12 ω)+ Λ 21 )] ρ 21 i Ω 12 eff Δ ρ

Metrics