Abstract

We describe both theoretically and experimentally the existence and excitation of confined modes in planar arrays of gold nanodisks. Ordered 2D lattices of monodispersive nanoparticles are manufactured, embedded in a silica matrix, and exposed to evanescent prism-coupling illumination, leading to dark features in the reflectivity, which signal the presence of confined modes guided along the arrays. We find remarkable agreement between theory and experiment in the frequency-momentum dispersion of the resonances. Direct excitation of these modes reveals long propagation distances and deep extinction features. This combined experimental and theoretical characterization of guided modes shows a good understanding of the optical response of metallic particles arrays, which can be beneficial in future designs of optical-signal and distant-sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
    [CrossRef] [PubMed]
  2. A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
    [CrossRef]
  3. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
    [CrossRef]
  4. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006).
    [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
    [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
    [CrossRef] [PubMed]
  7. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
    [CrossRef]
  9. P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
    [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
    [CrossRef] [PubMed]
  11. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
    [CrossRef] [PubMed]
  12. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
    [CrossRef]
  13. L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
    [CrossRef] [PubMed]
  14. Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
    [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
    [CrossRef] [PubMed]
  18. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106, 7729–7744 (2002).
    [CrossRef]
  19. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
    [CrossRef]
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
    [CrossRef]
  21. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
    [CrossRef] [PubMed]
  22. P. E. Batson, “A new surface plasmon resonance in clusters of small aluminum spheres,” Ultramicroscopy9, 277–282 (1982).
    [CrossRef]
  23. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
    [CrossRef]
  24. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006).
    [CrossRef] [PubMed]
  25. X. M. Bendaña and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009).
    [CrossRef]
  26. D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
    [CrossRef] [PubMed]
  27. M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
    [CrossRef] [PubMed]
  28. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998).
    [CrossRef]
  29. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
    [CrossRef] [PubMed]
  30. R. Sainidou and F. J. García de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express16, 4499–4506 (2008).
    [CrossRef] [PubMed]
  31. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
    [CrossRef]
  32. S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
    [CrossRef]
  33. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
    [CrossRef] [PubMed]
  34. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
    [CrossRef] [PubMed]
  35. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
    [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
    [CrossRef] [PubMed]
  37. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
    [CrossRef]
  38. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
    [CrossRef]
  39. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
    [CrossRef]
  40. A. Otto, “Theory of plasmon excitation in thin films by electrons of non-normal incidence,” Phys. Status Solidi22, 401–406 (1967).
    [CrossRef]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
    [CrossRef]
  42. M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007).
    [CrossRef]
  43. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
    [CrossRef]
  44. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
    [CrossRef] [PubMed]
  45. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
    [CrossRef]
  46. R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973).
    [CrossRef]

2011 (3)

Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

2010 (3)

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

2009 (4)

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

X. M. Bendaña and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009).
[CrossRef]

2008 (9)

R. Sainidou and F. J. García de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express16, 4499–4506 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007).
[CrossRef]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

2006 (3)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

2003 (5)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

2002 (2)

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106, 7729–7744 (2002).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

2001 (1)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

1998 (2)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998).
[CrossRef]

1997 (3)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

1982 (1)

P. E. Batson, “A new surface plasmon resonance in clusters of small aluminum spheres,” Ultramicroscopy9, 277–282 (1982).
[CrossRef]

1973 (1)

R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973).
[CrossRef]

1967 (1)

A. Otto, “Theory of plasmon excitation in thin films by electrons of non-normal incidence,” Phys. Status Solidi22, 401–406 (1967).
[CrossRef]

Aizpurua, J.

Álvarez-Puebla, R. A.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Ansari, D. O.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Aoki, K.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

Asahi, R.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998).
[CrossRef]

Bankson, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

Batson, P. E.

P. E. Batson, “A new surface plasmon resonance in clusters of small aluminum spheres,” Ultramicroscopy9, 277–282 (1982).
[CrossRef]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

X. M. Bendaña and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009).
[CrossRef]

Bergman, D. J.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Berrier, A.

S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
[CrossRef]

Bryant, G. W.

Catchpole, K. R.

Chen, G. Z.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Chow, E.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Ditlbacher, H.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997).
[CrossRef] [PubMed]

Estevez, M. C.

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Galler, N.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

X. M. Bendaña and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009).
[CrossRef]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

R. Sainidou and F. J. García de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express16, 4499–4506 (2008).
[CrossRef] [PubMed]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006).
[CrossRef] [PubMed]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

Gomez-Rivas, J.

S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Halas, N.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Hazle, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

Hirsch, L.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hohenau, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Hohenester, U.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
[CrossRef]

Huang, Y. F.

Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
[CrossRef]

Johansson, P.

P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Käll, M.

P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
[CrossRef]

Kamat, P. V.

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106, 7729–7744 (2002).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Kociak, M.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Koller, D. M.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Lechuga, L. M.

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006).
[CrossRef] [PubMed]

Leitner, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Li, K. R.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Luo, Y. L.

Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Mazzucco, S.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

McFarland, A.

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

Morikawa, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Nie, S.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

Ohwaki, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

Otte, M. A.

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

Otto, A.

A. Otto, “Theory of plasmon excitation in thin films by electrons of non-normal incidence,” Phys. Status Solidi22, 401–406 (1967).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Pastoriza-Santos, I.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Peng, X. H.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008).
[CrossRef] [PubMed]

Price, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Qian, X.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Quinten, M.

Regatos, D.

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

Reil, F.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Rivera, B.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Rodríguez, S. R. K.

S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
[CrossRef]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Rodríguez-Lorenzo, L.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Romero, I.

Sainidou, R.

Schaafsma, M. C.

S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

Sepulveda, B.

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

Sershen, S.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Shiao, Y. S.

Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
[CrossRef] [PubMed]

Shin, D. M.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

Stafford, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Stéphan, O.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Tacke, M.

R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973).
[CrossRef]

Taga, Y.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Trügler, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Ulrich, R.

R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973).
[CrossRef]

Van Duyne, R.

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

van Sprang, H. A.

M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007).
[CrossRef]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

Verschuuren, M. A.

M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
[CrossRef]

Wang, M. D.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

West, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Xu, H.

P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
[CrossRef]

Yang, L.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Yin-Goen, Q.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Young, A. N.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

ACS Nano (1)

Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011).
[CrossRef] [PubMed]

M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011).
[CrossRef] [PubMed]

An. Chem. (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002).
[CrossRef]

J. Phys. Chem. B (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106, 7729–7744 (2002).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006).
[CrossRef] [PubMed]

Mater. Res. Soc. Symp. Proc. (1)

M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007).
[CrossRef]

Nano Lett. (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005).
[CrossRef] [PubMed]

Nat. Biotech. (1)

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008).
[CrossRef]

Nat. Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Nat. Nanotech. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (4)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997).
[CrossRef]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

A. Otto, “Theory of plasmon excitation in thin films by electrons of non-normal incidence,” Phys. Status Solidi22, 401–406 (1967).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Science (3)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998).
[CrossRef] [PubMed]

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. E. Batson, “A new surface plasmon resonance in clusters of small aluminum spheres,” Ultramicroscopy9, 277–282 (1982).
[CrossRef]

Other (2)

S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Images and scheme of the system under consideration. (a) and (b) SEM images of our nanoimprinted arrays. The gold nanodisks are arranged in a square lattice with parameter a = 300nm. The height of the disks is h = 50nm and the diameter is D = 200nm in (a) and D = 250nm in (b). (c) An array of golden disks is embedded in a homogeneous SiO2 environment (refraction index nSiO2 = 1.46) at a distance d = 600nm from a prism interface. This is the Otto configuration, whereby light undergoes total internal reflection inside the prism (nF2 = 1.67) with incident angle θi and parallel wave vector k outside the light cone. Light couples evanescently to the confined modes of the array, thus producing a measurable attenuated total reflection.

Fig. 2
Fig. 2

Simulations of confined modes in a square array of SiO2-embedded gold nanodisks of D = 200nm in diameter. (a) Dispersion diagram showing the light energy and wave-vector dependence of the array reflection coefficient (color scale). Guided modes show up as bright features. The light cone (solid line) and its first Bragg-reflection (dashed line) are plotted for reference. (b) Electric-field intensity maps over a region of 4 unit cells at a distance D/2 above the array for characteristic points within the dispersion diagram, as shown by labels A–D in both (a) and (b). The nanoparticle contours are represented by a dashed circle. Dipolar patterns are visible when confined modes are excited (A and B), leading to large field enhancement (see color scale). In contrast, lower field enhancement is associated with non-resonant reflection (C and D), although hotspots can localize between particle gaps (see D), leading to an almost dispersionless feature in (a).

Fig. 3
Fig. 3

Experimental (a,b) and theoretical (c,d) energy-angle-dependent reflectance of the combined array-prism system [Fig. 1(a)] for nanodisks of diameter D = 200nm (a,c) and D = 250nm (b,d). The excitation of a guided mode is revealed by a dark (low reflectance) feature at the right of the critical angle (θi ≈ 64deg).

Fig. 4
Fig. 4

Experiment-theory comparison of the dispersion relation (a), the penetration length outside the array (Lz) (b), and the propagation distance (Lx) (c) for the guided modes. The values shown in this plot are obtained from Lorentzian functions fitted to the dips shown in Fig. 3. From the position of the peak we calculate both the dispersion relation and the penetration length, while the width is related to the propagation length. Theory: dashed curves. Experiment: solid curves, obtained from constant-energy Lorentzian fits of the reflection dip in Fig. 3 [the inset in (a) shows a characteristic example of the Lorentzian fit for the energy 1,74eV signaled with crosses in the main plot]. Black (gray) curves correspond to disks of diameter D = 200nm (D = 250nm).

Metrics