Abstract

In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
    [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
  3. J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
    [CrossRef]
  4. X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
    [CrossRef]
  5. D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett.40(14), 856–857 (2004).
    [CrossRef]
  6. G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
    [CrossRef]
  7. J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
    [CrossRef]
  8. M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
    [CrossRef]
  9. B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
    [CrossRef]
  10. M. Tur and A. Arie, “Phase induced intensity noise in concatenated fiber-optic delay lines,” J. Lightwave Technol.6(1), 120–130 (1988).
  11. E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).
  12. B. C. Pile and G. W. Taylor, “An investigation of the operation and performance of coherent microwave photonic filters,” IEEE Trans. Microw. Theory and Tech.57(2), 487–495 (2009).
  13. M. S. Rasras, et al., “A tunable microwave-photonic notch filter fabricated in CMOS silicon,” Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf. Tech. Dig. (2008).
  14. W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
    [CrossRef]
  15. M. P. Fok, Y. Deng, K. Kravtsov, and P. R. Prucnal, “Signal beating elimination using single-mode fiber to multimode fiber coupling,” Opt. Lett.36(23), 4578–4580 (2011).
    [CrossRef] [PubMed]
  16. D. A. Chapman, “Low-loss many-to-one fiber couplers with few or single-moded inputs and a multi-mode output,” Fiber and Integrated Opt.23(5), 375–385 (2004).
    [CrossRef]

2011 (1)

2009 (2)

B. C. Pile and G. W. Taylor, “An investigation of the operation and performance of coherent microwave photonic filters,” IEEE Trans. Microw. Theory and Tech.57(2), 487–495 (2009).

X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
[CrossRef]

2006 (2)

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).

2005 (3)

M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

2004 (3)

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett.40(14), 856–857 (2004).
[CrossRef]

D. A. Chapman, “Low-loss many-to-one fiber couplers with few or single-moded inputs and a multi-mode output,” Fiber and Integrated Opt.23(5), 375–385 (2004).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).

2000 (1)

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

1999 (2)

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
[CrossRef]

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

1988 (1)

M. Tur and A. Arie, “Phase induced intensity noise in concatenated fiber-optic delay lines,” J. Lightwave Technol.6(1), 120–130 (1988).

Arie, A.

M. Tur and A. Arie, “Phase induced intensity noise in concatenated fiber-optic delay lines,” J. Lightwave Technol.6(1), 120–130 (1988).

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
[CrossRef]

Chan, E. H. W.

Chapman, D. A.

D. A. Chapman, “Low-loss many-to-one fiber couplers with few or single-moded inputs and a multi-mode output,” Fiber and Integrated Opt.23(5), 375–385 (2004).
[CrossRef]

Chin, W.

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

Coppinger, F.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Deng, Y.

Fok, M. P.

Fonjallaz, P. Y.

M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
[CrossRef]

Gunnarsson, O.

M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
[CrossRef]

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
[CrossRef]

Hunter, D. B.

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett.40(14), 856–857 (2004).
[CrossRef]

Jalali, B.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Kim, D.

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

Kravtsov, K.

Lee, S.

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

Madsen, C. K.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Marti, J.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
[CrossRef]

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).

Mora, J.

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
[CrossRef]

Pile, B. C.

B. C. Pile and G. W. Taylor, “An investigation of the operation and performance of coherent microwave photonic filters,” IEEE Trans. Microw. Theory and Tech.57(2), 487–495 (2009).

Piqueras, M. A.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
[CrossRef]

Popov, M.

M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
[CrossRef]

Prucnal, P. R.

Song, J.

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

Taylor, G. W.

B. C. Pile and G. W. Taylor, “An investigation of the operation and performance of coherent microwave photonic filters,” IEEE Trans. Microw. Theory and Tech.57(2), 487–495 (2009).

Tur, M.

M. Tur and A. Arie, “Phase induced intensity noise in concatenated fiber-optic delay lines,” J. Lightwave Technol.6(1), 120–130 (1988).

Vidal, B.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
[CrossRef]

Williams, J. A. R.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
[CrossRef]

Yu, G.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

Zhang, W.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

Electron. Lett. (4)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter with tunability, reconfigurability and bipolar taps,” Electron. Lett.45(16), 840–841 (2009).
[CrossRef]

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett.40(14), 856–857 (2004).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett.35(6), 494 (1999).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett.41(23), 1286–1287 (2005).
[CrossRef]

Fiber and Integrated Opt. (1)

D. A. Chapman, “Low-loss many-to-one fiber couplers with few or single-moded inputs and a multi-mode output,” Fiber and Integrated Opt.23(5), 375–385 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

M. Popov, P. Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40-dB sidelobe suppression,” IEEE Photon. Technol. Lett.17(3), 663–665 (2005).
[CrossRef]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

IEEE Trans. Microw. Theory and Tech. (1)

B. C. Pile and G. W. Taylor, “An investigation of the operation and performance of coherent microwave photonic filters,” IEEE Trans. Microw. Theory and Tech.57(2), 487–495 (2009).

J. Lightwave Technol. (2)

M. Tur and A. Arie, “Phase induced intensity noise in concatenated fiber-optic delay lines,” J. Lightwave Technol.6(1), 120–130 (1988).

E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

W. Chin, D. Kim, J. Song, and S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys.45(4A), 2576–2579 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. S. Rasras, et al., “A tunable microwave-photonic notch filter fabricated in CMOS silicon,” Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf. Tech. Dig. (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a. Experimental Setup b. Input signal c. Signal combination with SM-SM coupler d. Signal combination using SM-MM combiner.

Fig. 2
Fig. 2

Proposed architecture for multi-tap filter using a SM-MM combiner for incoherent summing. PC: polarization controller, EOM: electro-optic modulator, τ18: tunable delay lines, PD: photodetector

Fig. 3
Fig. 3

Measured and predicted magnitude response of 8-tap FIR filter weighted [1 1 −1 −1 −1 −1 1 1]

Fig. 4
Fig. 4

Measured and predicted magnitude response of 8-tap FIR filter weighted [1 0 −1.122 0 −0.6166 0 1.1482 0]

Fig. 5
Fig. 5

Measured magnitude responses of 8-tap FIR filter weighted [1 1 −1 −1 −1 −1 1 1] using a traditional single-mode fused coupler.

Fig. 6
Fig. 6

Measured magnitude responses of 8-tap FIR filter weighted [1 0 −1.122 0 −0.6166 0 1.1482 0] using a traditional single-mode fused coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y[n]= b 0 x[n]+ b 1 x[nτ]+...+ b N x[nNτ]
H(ω)= m=0 N b m exp(jωmτ)

Metrics