Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

B. Liu and X. D. He, “Continuous generation of “light bullets” in dissipative media by an annularly periodic potential,” Opt. Express 19(21), 20009–20014 (2011).

[CrossRef]
[PubMed]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36(7), 1200–1202 (2011).

[CrossRef]
[PubMed]

C. P. Yin, D. Mihalache, and Y. J. He, “Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential,” J. Opt. Soc. Am. B 28(2), 342–346 (2011).

B. Liu, X. D. He, and S. J. Li, “Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 056607 (2011).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

D. Mihalache, “Three-dimensional Ginzburg-Landau dissipative solitons supported by a two-dimensional transverse grating,” Proc. Romanian Acad. Ser. A 11(2), 142–147 (2010).

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80(3), 033835 (2009).

[CrossRef]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026606 (2009).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

C. López-Mariscal and J. C. Gutiérrez-Vega, “In your phase: all about optical vortices,” Opt. Photonics News 20(5), 10–13 (2009).

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

C. Cleff, B. Gütlich, and C. Denz, “Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment,” Phys. Rev. Lett. 100(23), 233902 (2008).

[CrossRef]
[PubMed]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions,” Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101 (2002).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016605 (2001).

[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for Lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions,” Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).

[CrossRef]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

C. Cleff, B. Gütlich, and C. Denz, “Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment,” Phys. Rev. Lett. 100(23), 233902 (2008).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016605 (2001).

[PubMed]

C. Cleff, B. Gütlich, and C. Denz, “Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment,” Phys. Rev. Lett. 100(23), 233902 (2008).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

C. López-Mariscal and J. C. Gutiérrez-Vega, “In your phase: all about optical vortices,” Opt. Photonics News 20(5), 10–13 (2009).

C. Cleff, B. Gütlich, and C. Denz, “Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment,” Phys. Rev. Lett. 100(23), 233902 (2008).

[CrossRef]
[PubMed]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

C. P. Yin, D. Mihalache, and Y. J. He, “Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential,” J. Opt. Soc. Am. B 28(2), 342–346 (2011).

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36(7), 1200–1202 (2011).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80(3), 033835 (2009).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for Lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, X. D. He, and S. J. Li, “Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 056607 (2011).

[CrossRef]
[PubMed]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

B. Liu and X. D. He, “Continuous generation of “light bullets” in dissipative media by an annularly periodic potential,” Opt. Express 19(21), 20009–20014 (2011).

[CrossRef]
[PubMed]

B. Liu, X. D. He, and S. J. Li, “Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 056607 (2011).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

C. López-Mariscal and J. C. Gutiérrez-Vega, “In your phase: all about optical vortices,” Opt. Photonics News 20(5), 10–13 (2009).

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026606 (2009).

[CrossRef]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80(3), 033835 (2009).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016605 (2001).

[PubMed]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

C. P. Yin, D. Mihalache, and Y. J. He, “Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential,” J. Opt. Soc. Am. B 28(2), 342–346 (2011).

D. Mihalache, “Three-dimensional Ginzburg-Landau dissipative solitons supported by a two-dimensional transverse grating,” Proc. Romanian Acad. Ser. A 11(2), 142–147 (2010).

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80(3), 033835 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016605 (2001).

[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for Lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for Lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026606 (2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101 (2002).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions,” Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–522 (1998).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

D. V. Skryabin and A. G. Vladimirov, “Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101 (2002).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–522 (1998).

[CrossRef]

C. P. Yin, D. Mihalache, and Y. J. He, “Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential,” J. Opt. Soc. Am. B 28(2), 342–346 (2011).

B. Liu and X. D. He, “Continuous generation of “light bullets” in dissipative media by an annularly periodic potential,” Opt. Express 19(21), 20009–20014 (2011).

[CrossRef]
[PubMed]

A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions,” Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, Z. R. Qiu, and H. Z. Wang, “Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations,” Opt. Express 17(15), 12203–12209 (2009).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009).

[CrossRef]
[PubMed]

B. Liu, Y. J. He, B. A. Malomed, X. S. Wang, P. G. Kevrekidis, T. B. Wang, F. C. Leng, Z. R. Qiu, and H. Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35(12), 1974–1976 (2010).

[CrossRef]
[PubMed]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36(7), 1200–1202 (2011).

[CrossRef]
[PubMed]

C. López-Mariscal and J. C. Gutiérrez-Vega, “In your phase: all about optical vortices,” Opt. Photonics News 20(5), 10–13 (2009).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg-Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80(3), 033835 (2009).

[CrossRef]

10D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008).

[CrossRef]

D. Mihalache, D. Mazilu, V. Skarka, B. Malomed, H. Leblond, N. Aleksić, and F. Lederer, “Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials,” Phys. Rev. A 82(2), 023813 (2010).

[CrossRef]

Y. J. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(6), 066206 (2012).

[CrossRef]
[PubMed]

B. Liu, X. D. He, and S. J. Li, “Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(5), 056607 (2011).

[CrossRef]
[PubMed]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026606 (2009).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016605 (2001).

[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101 (2002).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stablevotex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of Stable Vortical Solitons in Ginzburg-Landau Media with Radially Inhomogeneous Losses,” Phys. Rev. Lett. 105(21), 213901 (2010).

[CrossRef]
[PubMed]

C. Cleff, B. Gütlich, and C. Denz, “Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment,” Phys. Rev. Lett. 100(23), 233902 (2008).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for Lasers,” Phys. Rev. Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative satial solitns by material and virtual gratings,” Phys. Scr. 82(6), 065404 (2010).

[CrossRef]

D. Mihalache, “Three-dimensional Ginzburg-Landau dissipative solitons supported by a two-dimensional transverse grating,” Proc. Romanian Acad. Ser. A 11(2), 142–147 (2010).

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).

[CrossRef]

N. Rosanov, “Solitons in laser systems with absorption,” in Dissipative Solitons, N. Akhmediev and A. Ankievicz, eds. (Springer-Verlag, Berlin, 2005).

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, New York, 2005), p. 157.