Abstract

We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-probability distributions and decoherence of Hermite-excited squeezed thermal states

Zhen Wang, Heng-mei Li, and Hong-chun Yuan
J. Opt. Soc. Am. B 31(9) 2163-2174 (2014)

Deterministic nonclassicality from thermal states

L. Slodička, P. Marek, and R. Filip
Opt. Express 24(8) 7858-7870 (2016)

Engineering continuous and discrete variable quantum vortex states by nonlocal photon subtraction in a reconfigurable photonic chip

David Barral, Jesús Liñares, and Daniel Balado
J. Opt. Soc. Am. B 33(11) 2225-2235 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [Crossref]
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref] [PubMed]
  3. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
    [Crossref]
  4. S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett.  90, 117901 (2003).
    [Crossref] [PubMed]
  5. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
    [Crossref]
  6. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
    [Crossref]
  7. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
    [Crossref] [PubMed]
  8. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
    [Crossref] [PubMed]
  9. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007).
    [Crossref] [PubMed]
  10. M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
    [Crossref]
  11. J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
    [Crossref]
  12. P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
    [Crossref]
  13. A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett.  88, 250401 (2002).
    [Crossref] [PubMed]
  14. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
    [Crossref]
  15. R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
    [Crossref]
  16. J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
    [Crossref]
  17. J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
    [Crossref] [PubMed]
  18. Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].
  19. T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
    [Crossref]
  20. S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
    [Crossref] [PubMed]
  21. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007).
    [Crossref] [PubMed]
  22. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
    [Crossref] [PubMed]
  23. A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B 6, S556–S559 (2004).
    [Crossref]
  24. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
    [Crossref] [PubMed]
  25. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
    [Crossref] [PubMed]
  26. D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A 79, 012313 (2009).
    [Crossref]
  27. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
    [Crossref] [PubMed]
  28. M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
    [Crossref] [PubMed]
  29. J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
    [Crossref]

2012 (2)

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

2011 (1)

P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
[Crossref]

2010 (2)

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

2009 (3)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
[Crossref]

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A 79, 012313 (2009).
[Crossref]

2008 (2)

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

2007 (4)

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007).
[Crossref] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007).
[Crossref] [PubMed]

2006 (3)

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

2005 (2)

J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
[Crossref]

R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
[Crossref]

2004 (1)

A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B 6, S556–S559 (2004).
[Crossref]

2003 (2)

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett.  90, 117901 (2003).
[Crossref] [PubMed]

2002 (1)

A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett.  88, 250401 (2002).
[Crossref] [PubMed]

2001 (1)

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

1999 (2)

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

1993 (1)

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

1982 (1)

W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

Aichele, T.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

Akiyama, T.

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Andersen, U. L.

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Andersen, U.L.

R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
[Crossref]

Ansmann, M.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Bartlett, S. D.

S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett.  90, 117901 (2003).
[Crossref] [PubMed]

Beck, M.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

Benson, O.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

Bernu, J.

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Bialczak, R. C.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Bimbard, E.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

Brune, M.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
[Crossref]

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

Clausen, J.

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

Cleland, A. N.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Dakna, M.

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

Deleglise, S.

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Dotsenko, I.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Endo, M.

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Facchi, P.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

Faridani, A.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

Filip, R.

P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
[Crossref]

D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A 79, 012313 (2009).
[Crossref]

R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
[Crossref]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Fiurás?ek, J.

J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
[Crossref]

Furusawa, A.

P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
[Crossref]

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007).
[Crossref] [PubMed]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Garcia-Patron, R.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

García-Patrón, R.

J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
[Crossref]

Gilchrist, A.

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Glancy, S.

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Gleyzes, S.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

Gottesman, D.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

Grangier, P.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
[Crossref] [PubMed]

Hansen, H.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

Haroche, S.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Hayashi, T.

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

Hofheinz, M.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Huck, A.

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Iwata, N.

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Jain, N.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Jeong, H.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

Knöll, L.

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Lucero, E.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Lvovsky, A. I.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B 6, S556–S559 (2004).
[Crossref]

A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett.  88, 250401 (2002).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

MacRae, A.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

Marek, P.

P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
[Crossref]

R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
[Crossref]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Martinis, J. M.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Menzies, D.

D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A 79, 012313 (2009).
[Crossref]

Milburn, G.J.

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Miwa, Y.

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Mlynek, J.

A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett.  88, 250401 (2002).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

Mølmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Munro, W. J.

S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett.  90, 117901 (2003).
[Crossref] [PubMed]

Munro, W.J.

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

Neeley, M.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
[Crossref]

OfConnell, A. D.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Ourjoumtsev, A.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
[Crossref] [PubMed]

Pascazio, S.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

Peaudecerf, B.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

Raimond, J. M.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

Raimond, J.-M.

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Ralph, T.C.

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

Raymer, M. G.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

Sank, D.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Sasaki, M.

Sayrin, C.

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

Schiller, S.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Smithey, D. T.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

Takahashi, H.

Takei, N.

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Tualle-Brouri, R.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
[Crossref] [PubMed]

van Loock, P.

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Vistnes, A. I.

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
[Crossref]

Wakui, K.

Wang, H.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Welsch, D.-G.

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

Wenner, J.

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Wooters, W. K.

W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

Yoshikawa, J.

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Zurek, W. H.

W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

J. Opt. B (1)

A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B 6, S556–S559 (2004).
[Crossref]

Nat. Photonics (1)

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[Crossref]

Nature (6)

W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref] [PubMed]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature 402, 390–393 (1999).
[Crossref]

S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature 455, 510–514 (2008).
[Crossref] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature 448, 784–786 (2007).
[Crossref] [PubMed]

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature 459, 546–549 (2009).
[Crossref] [PubMed]

Nature Photon (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon.  3, 687–695 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. A (8)

J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A 86, 032120 (2012).
[Crossref]

T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003).
[Crossref]

D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A 79, 012313 (2009).
[Crossref]

M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658–1661 (1999).
[Crossref]

J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72, 033822 (2005).
[Crossref]

P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A 84, 053802 (2011).
[Crossref]

R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A 71, 042308 (2005).
[Crossref]

J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A 76, 060301(R)(2007).
[Crossref]

Phys. Rev. Lett (7)

J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett.  101, 250501 (2008).
[Crossref] [PubMed]

A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett.  88, 250401 (2002).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett.  87, 050402 (2001).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett.  96, 213601 (2006).
[Crossref] [PubMed]

S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett.  90, 117901 (2003).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett.  97, 083604 (2006).
[Crossref] [PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett.  70, 1244–1247 (1993).
[Crossref] [PubMed]

Rev. Mod. Phys (1)

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys.  84, 621–669 (2012).
[Crossref]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Other (1)

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the experiment. The output of HD is recorded by a digital oscilloscope when a trigger is obtained. Triggers are obtained from an AND circuit when all of three APDs have clicks simultaneously. NOPO, non-degenerate optical parametric oscillator; SC, split cavity; FC, filter cavity; HD, homodyne detector; APD, avalanche photo diode; HBS, half beamsplitter; HWP, half-wave plate; PBS, polarization beamsplitter; PZT, piezo electric transducer.

Fig. 2
Fig. 2

The experimentally reconstructed density matrices and Wigner functions (h̄ = 1). (a) Three photon state, (b) coherent state superposition, (c) superposition of zero- and three-photon state with s = 0.86q. The small insets of Wigner functions of the ideal states are shown for comparison.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| ψ s , i n q n | n s | n i ,
| ψ s 0 | i ( a 3 + β 1 ) ( a 3 + β 2 ) ( a 3 + β 3 ) | ψ s , i ,
| ψ s β 1 β 2 β 3 | 0 s + q 3 ( β 1 β 2 + β 2 β 3 + β 3 β 1 ) | 1 s + 2 3 q 2 ( β 1 + β 2 + β 3 ) | 2 s + 2 3 q 3 | 3 s .

Metrics