Abstract

Lensed fiber optics is of great importance to many applications such as optical sensing, optical coupling, laser trapping etc. In this paper we have demonstrated a unique method to fabricate liquid-core lensed fibers by filling UV curable adhesive into hollow fibers, and to control the focal length and spot size by pumping liquid into or out of the fiber end. In experiment, tuning of focal length from 2.414 to 0.810 mm has been obtained, and solidification of the adhesive core has also been carried out successfully. Further simulation suggests that the focused spot size can be reduced to <10 micron by adjusting the refractive index and fiber geometry. Such technique has the potential to manufacture custom-made solid lensed fibers and liquid-core solid-tip lensed fibers in volume at low cost. The same technique may be used for input and output coupling of optofluidic waveguides with external optical components like optical fibers and lasers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” Trends Analyt. Chem.23(5), 385–392 (2004).
    [CrossRef]
  2. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
    [CrossRef] [PubMed]
  3. F. Dai, Y. Xu, and X. Chen, “Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber,” Opt. Express17(22), 19882–19886 (2009).
    [CrossRef] [PubMed]
  4. P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, and H. Franke, “Water-core waveguide for pollution measurements in the deep ultraviolet,” Appl. Opt.37(21), 4991–4997 (1998).
    [CrossRef] [PubMed]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
    [CrossRef]
  6. X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
    [CrossRef]
  7. N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
    [CrossRef] [PubMed]
  8. X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
    [CrossRef]
  9. Y. Lin, “Application of lensed fiber collimator to miniature CWDM filter device,” Microw. Opt. Technol. Lett.54(2), 319–322 (2012).
    [CrossRef]
  10. A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
    [CrossRef]
  11. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt.47(10), 1510–1516 (2008).
    [CrossRef] [PubMed]
  12. R. K. Tyson, Adaptive Optics Engineering Handbook, New York, 2000.
  13. Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express12(17), 4123–4128 (2004).
    [CrossRef] [PubMed]
  14. Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
    [CrossRef]
  15. S. I. E. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng.29(2), 146–150 (2005).
    [CrossRef]
  16. C. C. Wu, Y. D. Tseng, S. M. Kuo, and C. H. Lin, “Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist,” Opt. Express19(23), 22993–22998 (2011).
    [CrossRef] [PubMed]
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).
  18. P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding,” Int. J. Heat Mass Transf.49(21-22), 3846–3854 (2006).
    [CrossRef]

2012

Y. Lin, “Application of lensed fiber collimator to miniature CWDM filter device,” Microw. Opt. Technol. Lett.54(2), 319–322 (2012).
[CrossRef]

2011

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

C. C. Wu, Y. D. Tseng, S. M. Kuo, and C. H. Lin, “Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist,” Opt. Express19(23), 22993–22998 (2011).
[CrossRef] [PubMed]

2010

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

2009

Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
[CrossRef]

F. Dai, Y. Xu, and X. Chen, “Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber,” Opt. Express17(22), 19882–19886 (2009).
[CrossRef] [PubMed]

2008

2007

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
[CrossRef] [PubMed]

2006

P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding,” Int. J. Heat Mass Transf.49(21-22), 3846–3854 (2006).
[CrossRef]

2005

S. I. E. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng.29(2), 146–150 (2005).
[CrossRef]

2004

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” Trends Analyt. Chem.23(5), 385–392 (2004).
[CrossRef]

Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express12(17), 4123–4128 (2004).
[CrossRef] [PubMed]

2001

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

1998

Backhouse, C. J.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
[CrossRef] [PubMed]

Belz, M.

Bliss, C. L.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
[CrossRef] [PubMed]

Chang, P. C.

P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding,” Int. J. Heat Mass Transf.49(21-22), 3846–3854 (2006).
[CrossRef]

Chen, X.

Choi, H. Y.

Choi, W. J.

Chuah, H. T.

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

Dai, F.

Dallas, T.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” Trends Analyt. Chem.23(5), 385–392 (2004).
[CrossRef]

Dasgupta, P. K.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” Trends Analyt. Chem.23(5), 385–392 (2004).
[CrossRef]

Dress, P.

Faidz, A. R.

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

Franke, H.

Ghafouri-Shiraz, H.

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

Gould, J. C.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

Grattan, K. T. V.

Heise, C. P.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

Hu, Z.

Huang, J. B.

Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
[CrossRef]

Huang, T. J.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

Hwang, S. J.

P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding,” Int. J. Heat Mass Transf.49(21-22), 3846–3854 (2006).
[CrossRef]

Jiang, H.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

Klein, K. F.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

Kuo, S. M.

Lee, B. H.

Liang, J.

Lin, C. H.

Lin, S. C.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

Lin, S. I. E.

S. I. E. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng.29(2), 146–150 (2005).
[CrossRef]

Lin, Y.

Y. Lin, “Application of lensed fiber collimator to miniature CWDM filter device,” Microw. Opt. Technol. Lett.54(2), 319–322 (2012).
[CrossRef]

Mao, X. L.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

McMullin, J. N.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
[CrossRef] [PubMed]

Na, J.

Nawaz, A. A.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

Ryu, S. Y.

Smith, C. T.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

Stratton, Z. I.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

Su, W. J.

Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
[CrossRef]

Takahashi, K.

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

Tseng, Y. D.

Tseng, Y. T.

Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
[CrossRef]

Wang, J.

Wu, C. C.

Xu, Y.

Zeng, X.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

Int. J. Heat Mass Transf.

P. C. Chang and S. J. Hwang, “Simulation of infrared rapid surface heating for injection molding,” Int. J. Heat Mass Transf.49(21-22), 3846–3854 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

Biomicrofluid.

X. L. Mao, Z. I. Stratton, A. A. Nawaz, S. C. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluid.4(4), 043007 (2010).
[CrossRef]

Biomicrofluidics

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics4(3), 031501 (2010).
[CrossRef] [PubMed]

J. Manuf. Sci. Eng.

Y. T. Tseng, J. B. Huang, and W. J. Su, “Fabricating lensed fiber using a novel polishing method,” J. Manuf. Sci. Eng.131(4), 041016 (2009).
[CrossRef]

J. Microelectromech. Syst.

X. Zeng, C. T. Smith, J. C. Gould, C. P. Heise, and H. Jiang, “Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light,” J. Microelectromech. Syst.20(3), 583–593 (2011).
[CrossRef]

J. Opt. Commun.

A. R. Faidz, H. Ghafouri-Shiraz, K. Takahashi, and H. T. Chuah, “Analysis of combined ball lens and conically lensed fiber scheme to improve the coupling efficiency and misalignment tolerance between laser diodes and single mode fibers,” J. Opt. Commun.22(3), 82–86 (2001).
[CrossRef]

Lab Chip

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis,” Lab Chip7(10), 1280–1287 (2007).
[CrossRef] [PubMed]

Microw. Opt. Technol. Lett.

Y. Lin, “Application of lensed fiber collimator to miniature CWDM filter device,” Microw. Opt. Technol. Lett.54(2), 319–322 (2012).
[CrossRef]

Opt. Express

Precis. Eng.

S. I. E. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng.29(2), 146–150 (2005).
[CrossRef]

Trends Analyt. Chem.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” Trends Analyt. Chem.23(5), 385–392 (2004).
[CrossRef]

Other

R. K. Tyson, Adaptive Optics Engineering Handbook, New York, 2000.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Working principle of the lensed liquid-core waveguide. (b) Simplified optical model of silicate glass taper with NOA61 lens in TracePro, the inset shows the irradiance of the 45° screen with 655 nm red laser simulated by TracePro.

Fig. 2
Fig. 2

The liquid NOA61 volume is increasing with radius of curvature of the liquid lens reducing from (a) to (d) while keeping the lens aperture the same.

Fig. 3
Fig. 3

(a): Relationship between the focal length and the volume of NOA61 lenses (refractive index 1.527, fixed lens aperture ~0.854 mm). (b) Change of the laser FWHM spot diameter with the focal lengths. Hollow square: calculated value; Red circle with error bar: measured value.

Fig. 4
Fig. 4

(a) lensed liquid lens with liquid NOA61 adhesive (f = 0.412 mm) (b) lensed liquid lens with solid NOA61 adhesive after UV solidification (f = 0.3875 mm).

Fig. 5
Fig. 5

(a) Simulated spot size diameter at the focus against refractive index of core, n1 and refractive index of cladding, n2 ratio. Hollow core diameter = 8 μm, Cladding diameter = 125 μm, lens shape is hemisphere. (b) Simulated spot size diameter at the focus against cladding diameter of the hollow fiber. Hollow core diameter = 8 μm, lens is hemisphere, setting n1/n2 = 0.985 as for the NOA61-core lensed fiber.

Fig. 6
Fig. 6

The diameter of the lens is very close to the diameter of the fiber core with the droplet radius of 110.9 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= λ d( n liquid 1) ( h 3 + V π h 2 ),

Metrics