Abstract

Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
    [CrossRef]
  2. S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet and circuit network convergence with OpenFlow, ” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2010), Technical Digest (CD) (Optical Society of America, 2010), paper OTuG1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OTuG1 . ONF white paper, “Software-Defined Networking: The New Norm for Networks,” (ONF 2012).
  3. ITU-T Recommendation G.694.1, Feb 2012.
  4. L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong, I. Morita, H. Guo, J. Wu, R. Martínez, and R. Muñoz, “First field trial of an OpenFlow-based unified control plane for multi-layer multi-granularity optical networks, ” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2012), Technical Digest (CD) (Optical Society of America, 2012), paper PDP5D.2.
  5. S. Das, “Extensions to the OF Protocol in support of Circuit Switching, “addendum v0.3, June 2010.
  6. N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
    [CrossRef]
  7. S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Tu.1.D.1.
  8. S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou, and D. Simeonidou, “Integrated OpenFlow-GMPLS control plane: an overlay model for software defined packet over optical networks,” Opt. Express19(26), B421–B428 (2011).
    [CrossRef] [PubMed]
  9. M. Channegowda, P. Kostecki, N. Efstathiou, S. Azodolmolky, R. Nejabati, P. Kaczmarek, A. Autenrieth, J. P. Elbers, and D. Simeonidou, “Experimental evaluation of extended OpenFlow deployment for high-performance optical networks,” in Proceedings of ECOC, Tu.1.D.2 (2012).
  10. S. Azodolmolky, R. Nejabati, S. Peng, A. Hammad, M. P. Channegowda, N. Efstathiou, A. Autenrieth, P. Kaczmarek, and D. Simeonidou, “Optical FlowVisor: an OpenFlow-based optical network virtualization approach,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JTh2A.41.

2011 (1)

2008 (2)

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Anderson, T.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Azodolmolky, S.

Balakrishnan, H.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Casado, M.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Efstathiou, N.

Escalona, E.

Gude, N.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Jayakumar, R.

Koponen, T.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

McKeown, N.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Nejabati, R.

Parulkar, G.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Peterson, L.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Pettit, J.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Pfaff, B.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Rexford, J.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

Shenker, S.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Simeonidou, D.

Turner, J.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

ACM SIGCOMM Comput. Commun. Rev. (2)

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev.38(2), 69–74 (2008).
[CrossRef]

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an Operating System for Networks,” ACM SIGCOMM Comput. Commun. Rev.38(3), 105–110 (2008).
[CrossRef]

Opt. Express (1)

Other (7)

M. Channegowda, P. Kostecki, N. Efstathiou, S. Azodolmolky, R. Nejabati, P. Kaczmarek, A. Autenrieth, J. P. Elbers, and D. Simeonidou, “Experimental evaluation of extended OpenFlow deployment for high-performance optical networks,” in Proceedings of ECOC, Tu.1.D.2 (2012).

S. Azodolmolky, R. Nejabati, S. Peng, A. Hammad, M. P. Channegowda, N. Efstathiou, A. Autenrieth, P. Kaczmarek, and D. Simeonidou, “Optical FlowVisor: an OpenFlow-based optical network virtualization approach,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JTh2A.41.

S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Tu.1.D.1.

S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet and circuit network convergence with OpenFlow, ” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2010), Technical Digest (CD) (Optical Society of America, 2010), paper OTuG1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OTuG1 . ONF white paper, “Software-Defined Networking: The New Norm for Networks,” (ONF 2012).

ITU-T Recommendation G.694.1, Feb 2012.

L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong, I. Morita, H. Guo, J. Wu, R. Martínez, and R. Muñoz, “First field trial of an OpenFlow-based unified control plane for multi-layer multi-granularity optical networks, ” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2012), Technical Digest (CD) (Optical Society of America, 2012), paper PDP5D.2.

S. Das, “Extensions to the OF Protocol in support of Circuit Switching, “addendum v0.3, June 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Architecture for multi-domain multi Technology UCP (b) OF Agent blocks

Fig. 2
Fig. 2

(a) Flow Identifiers (b) Flow Mapping

Fig. 3
Fig. 3

Extended OpenFlow approaches for fixed grid

Fig. 4
Fig. 4

(a) Application Flow for Multi-Domain (b) Virtual Network request handling

Fig. 5
Fig. 5

Experiment test-bed spanning different geographical domains

Fig. 6
Fig. 6

(a) blocking rate of both approaches (b) different path setup times (c) Hardware setup times VS load (d) controller throughput performance

Fig. 7
Fig. 7

(a) OSA results (b) network slices across domains (c) end-to-end path setup timings

Fig. 8
Fig. 8

(a) Wireshark trace of OF messages (b) setup times for different domains

Metrics