Abstract

In previous work, we presented theory of how atmospheric turbulence can impart orbital angular momentum to propagating optical waves. In this paper we provide the first experimental demonstration of the detection of orbital angular momentum from distributed volume turbulence through the identification of well-defined, turbulence-induced, optical vortex trails in Shack-Hartmann wave front sensor measurements.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetso, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef] [PubMed]
  3. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
    [CrossRef] [PubMed]
  4. G. A. Tyler and R. W. Boyd, “Influenece of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34, 142–144 (2009).
    [CrossRef] [PubMed]
  5. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
    [CrossRef]
  6. W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
    [CrossRef]
  7. J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
    [CrossRef]
  8. N. M. Elias, “Photon orbital angular momentum in astronomy.” Astron. Astrophys. 492, 883–922 (2008).
    [CrossRef]
  9. N. M. Elias, “Photon orbital angular momentum and torque metrics for single telescopes and interferometers,” Astron. Astrophys. 541, 1–15 (2012).
    [CrossRef]
  10. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998).
    [CrossRef]
  11. D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
    [CrossRef]
  12. D. W. Oesch, D. J. Sanchez, and C. M. Tewksbury-Christle, “The aggregate behavior of branch points - persistent pairs,” Opt. Express 2, 1046–1059 (2012).
    [CrossRef]
  13. D. J. Sanchez and D. W. Oesch, “The localization of angular momentum in optical waves propagating through atmospheric turbulence,” Opt. Express 19, 25388–25396 (2011).
    [CrossRef]
  14. D. J. Sanchez and D. W. Oesch, “Orbital angular momentum in optical waves propagating through distributed atmospheric turbulence,” Opt. Express 19, 24596–24068 (2011).
    [CrossRef] [PubMed]
  15. D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points - measuring the number and velocity of atmospheric turbulence layers,” Opt. Express 18, 22377–22392 (2010).
    [CrossRef] [PubMed]
  16. S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 290–300.
  17. T. Brennan, (2001). WaveProp® is a wave optics propagation code written in the MATLAB® scripting language.
  18. D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
    [CrossRef]
  19. M. Chen, F. S. Roux, and J. C. Olivier, “Detection of phase singularities with a shack-hartmann wavefront sensor,” J. Opt. Soc. Am. A24, 1994–2002 (2007).
    [CrossRef]
  20. T. A. Rhoadarmer, “Development of a self-referencing interferometer wavefront sensor,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 112–126.
    [CrossRef]
  21. T. J. Brennan and D. C. Mann, “Estimation of optical turbulence characteristics from shack-hartmann wavefront measurements,” Proc. SPIE 7816, 781602 (2010).
    [CrossRef]
  22. T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.
  23. D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
    [CrossRef]
  24. M. Chen and F. S. Roux, “Dipole influence on shack-hartmann vortex detection in scintillated beams,” J. Opt. Soc. Am. A 25, 1084–1090 (2008).
    [CrossRef]
  25. D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.
  26. D. W. Oesch and D. J. Sanchez, “Creating well-defined orbital angular momentum states with a random turbulent medium,” Opt. Express 20, 12292–12302 (2012).
    [CrossRef] [PubMed]

2012

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

N. M. Elias, “Photon orbital angular momentum and torque metrics for single telescopes and interferometers,” Astron. Astrophys. 541, 1–15 (2012).
[CrossRef]

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. M. Tewksbury-Christle, “The aggregate behavior of branch points - persistent pairs,” Opt. Express 2, 1046–1059 (2012).
[CrossRef]

D. W. Oesch and D. J. Sanchez, “Creating well-defined orbital angular momentum states with a random turbulent medium,” Opt. Express 20, 12292–12302 (2012).
[CrossRef] [PubMed]

2011

2010

T. J. Brennan and D. C. Mann, “Estimation of optical turbulence characteristics from shack-hartmann wavefront measurements,” Proc. SPIE 7816, 781602 (2010).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points - measuring the number and velocity of atmospheric turbulence layers,” Opt. Express 18, 22377–22392 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2005

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[CrossRef] [PubMed]

2004

2002

J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
[CrossRef]

1999

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

1998

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Barnett, S. M.

Bary, J. S.

J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Blake, G. A.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

Boyd, R. W.

Brennan, T.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

T. Brennan, (2001). WaveProp® is a wave optics propagation code written in the MATLAB® scripting language.

Brennan, T. J.

T. J. Brennan and D. C. Mann, “Estimation of optical turbulence characteristics from shack-hartmann wavefront measurements,” Proc. SPIE 7816, 781602 (2010).
[CrossRef]

Chen, M.

Courtial, J.

Elias, N. M.

N. M. Elias, “Photon orbital angular momentum and torque metrics for single telescopes and interferometers,” Astron. Astrophys. 541, 1–15 (2012).
[CrossRef]

N. M. Elias, “Photon orbital angular momentum in astronomy.” Astron. Astrophys. 492, 883–922 (2008).
[CrossRef]

Farrell, T. C.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Franke-Arnold, S.

Fried, D. L.

Gallegos, A.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Gibson, G.

Glas, R. S.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 290–300.

Hogerheijde, M. R.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

Holzman, J.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Hutt, D. L.

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

Kastner, J. H.

J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
[CrossRef]

Kelly, P. R.

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
[CrossRef]

D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Kyrazis, D.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Mann, D. C.

T. J. Brennan and D. C. Mann, “Estimation of optical turbulence characteristics from shack-hartmann wavefront measurements,” Proc. SPIE 7816, 781602 (2010).
[CrossRef]

Mantravadi, S. V.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 290–300.

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Matson, C. L.

Oesch, D. W.

D. W. Oesch and D. J. Sanchez, “Creating well-defined orbital angular momentum states with a random turbulent medium,” Opt. Express 20, 12292–12302 (2012).
[CrossRef] [PubMed]

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. M. Tewksbury-Christle, “The aggregate behavior of branch points - persistent pairs,” Opt. Express 2, 1046–1059 (2012).
[CrossRef]

D. J. Sanchez and D. W. Oesch, “Orbital angular momentum in optical waves propagating through distributed atmospheric turbulence,” Opt. Express 19, 24596–24068 (2011).
[CrossRef] [PubMed]

D. J. Sanchez and D. W. Oesch, “The localization of angular momentum in optical waves propagating through atmospheric turbulence,” Opt. Express 19, 25388–25396 (2011).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points - measuring the number and velocity of atmospheric turbulence layers,” Opt. Express 18, 22377–22392 (2010).
[CrossRef] [PubMed]

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
[CrossRef]

D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.

Olivier, J. C.

Padgett, M. J.

Pas'ko, V.

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[CrossRef] [PubMed]

Rhoadarmer, T. A.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 290–300.

T. A. Rhoadarmer, “Development of a self-referencing interferometer wavefront sensor,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 112–126.
[CrossRef]

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Roux, F. S.

Sanchez, D. J.

D. W. Oesch and D. J. Sanchez, “Creating well-defined orbital angular momentum states with a random turbulent medium,” Opt. Express 20, 12292–12302 (2012).
[CrossRef] [PubMed]

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. M. Tewksbury-Christle, “The aggregate behavior of branch points - persistent pairs,” Opt. Express 2, 1046–1059 (2012).
[CrossRef]

D. J. Sanchez and D. W. Oesch, “Orbital angular momentum in optical waves propagating through distributed atmospheric turbulence,” Opt. Express 19, 24596–24068 (2011).
[CrossRef] [PubMed]

D. J. Sanchez and D. W. Oesch, “The localization of angular momentum in optical waves propagating through atmospheric turbulence,” Opt. Express 19, 25388–25396 (2011).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points - measuring the number and velocity of atmospheric turbulence layers,” Opt. Express 18, 22377–22392 (2010).
[CrossRef] [PubMed]

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.

D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
[CrossRef]

Smith, J. C.

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Tewksbury-Christle, C. M.

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

D. W. Oesch, D. J. Sanchez, and C. M. Tewksbury-Christle, “The aggregate behavior of branch points - persistent pairs,” Opt. Express 2, 1046–1059 (2012).
[CrossRef]

D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.

D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
[CrossRef]

Thi, W. F.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Tyler, G. A.

van Dishoeck, E. F.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

van Zadelhoff, G. J.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

Vasnetso, M.

Weintraub, D. A.

J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Astron. Astrophys.

N. M. Elias, “Photon orbital angular momentum in astronomy.” Astron. Astrophys. 492, 883–922 (2008).
[CrossRef]

N. M. Elias, “Photon orbital angular momentum and torque metrics for single telescopes and interferometers,” Astron. Astrophys. 541, 1–15 (2012).
[CrossRef]

Astrophys. J.

W. F. Thi, E. F. van Dishoeck, G. A. Blake, G. J. van Zadelhoff, and M. R. Hogerheijde, “Detection of H2 pure rotational line emission from the gg tauri binary system,” Astrophys. J. 521, L63 (1999).
[CrossRef]

J. S. Bary, D. A. Weintraub, and J. H. Kastner, “Detection of molecular hydrogen orbiting a ‘naked’ T Tauri star,” Astrophys. J. 576, L73–L76 (2002).
[CrossRef]

J. Opt. Soc. Am. A

New J. Phys.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[CrossRef]

Opt. Eng.

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
[CrossRef]

D. W. Oesch, C. M. Tewksbury-Christle, D. J. Sanchez, and P. R. Kelly, “The aggregate behavior of branch points - characterization in wave optical simulation,” Opt. Eng. 51, 106001 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[CrossRef] [PubMed]

Proc. SPIE

T. J. Brennan and D. C. Mann, “Estimation of optical turbulence characteristics from shack-hartmann wavefront measurements,” Proc. SPIE 7816, 781602 (2010).
[CrossRef]

Other

T. C. Farrell, D. J. Sanchez, J. C. Smith, J. Holzman, P. R. Kelly, T. Brennan, A. Gallegos, D. W. Oesch, and D. Kyrazis, “Understading the physics of optical deep turbulence at the earth’s boundary layer,” in “Unconventional Imaging and Wavefront Sensing VIII,”, J. J. Dolne, T. J. Karr, V. L. Gamiz, and D. C. Dayton, eds. (SPIE Press, 2012), Vol. 8520, pp. 85200H.

D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0601–0610.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 290–300.

T. Brennan, (2001). WaveProp® is a wave optics propagation code written in the MATLAB® scripting language.

D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” in “Advanced Wavefront Control: Methods, Devices, and Applications VII,”, R. A. Carerras, T. A. Rhoadarmer, and D. C. Dayton, eds. (SPIE Press, 2009), Vol. 7466, pp. 0501–0512.
[CrossRef]

T. A. Rhoadarmer, “Development of a self-referencing interferometer wavefront sensor,” in “Advanced Wavefront Control: Methods, Devices, and Applications II,”, M. K. Giles, J. D. Gonglewshi, and R. A. Carerras, eds. (SPIE Press, 2004), Vol. 5553, pp. 112–126.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Table-top laboratory demonstration of turbulence-induced, optical vortex trails using a two-layer atmospheric turbulence simulator

Fig. 2
Fig. 2

Measured test conditions of all of the SORTS data. In the top row (a) r0, the coherence length (Fried’s parameter), (b) 0, the inner scale, and (c) ρ, the branch point density along the propagation path are shown against the time of day. Red indicates data taken over the 2-mile propagation path at SOR while blue indicates data taken over the 55 m path at the Chestnut site. In the bottom row, the data is shown again for (d) r0, (e) 0 and (f) ρ vs time of day. Those data sets that were identified to have optical vortex trails are shown in green against the rest of the data shown in grey.

Fig. 3
Fig. 3

Optical vortex trail examples, 1–12, from the 2-mile path at Starfire Optical Range. The measured turbulence parameters for each example are listed on Table 1 along with the time and date. Horizontal lines, as in 10 and 11, are “fixed-pattern” noise.

Fig. 4
Fig. 4

Optical vortex trail examples, 13–24, from the 2 mile path at Starfire Optical Range. The measured turbulence parameters for each example are listed on Table 1 along with the time and date the data was collected.

Fig. 5
Fig. 5

Optical vortex trail examples, 25–36, from the experiments conducted at the Chestnut site. The measured turbulence parameters for each example are listed on Table 2 along with the time and date the data was collected.

Fig. 6
Fig. 6

Optical vortex trail examples, 37–48, from the experiments conducted at the Chestnut site. The measured turbulence parameters for each example are listed on Table 2 along with the time and date the data was collected.

Fig. 7
Fig. 7

Comparison of (top) the standard helicity x-t projection to (bottom) a single x-t frame of data for higher density data sets.

Fig. 8
Fig. 8

Optical vortex trail examples, 50–61, using a single x-t plane of the helicity array due to high branch point densities. The measured turbulence parameters for each example are listed on Table 3 along with the time and date the data was collected.

Fig. 9
Fig. 9

Optical vortex trail examples, 62–73, using a single x-t plane of the helicity array due to high branch point densities. The measured turbulence parameters for each example are listed on Table 3 along with the time and date the data was collected.

Tables (3)

Tables Icon

Table 1 Initial 2-mile SORTS optical vortex trail examples’ measured turbulence parameters according to the date and time the data was collected.

Tables Icon

Table 2 Chestnut SORTS optical vortex trail examples’ measured turbulence parameters.

Tables Icon

Table 3 Optical vortex trail examples’ measured turbulence parameters for sets where a single x-t plane is used due to high branch point density.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( i , j , f ) = G x ( i , j , f ) + G x ( i , j + 1 , f ) G x ( i + 1 , j + 1 , f ) G x ( i + 1 , j , f ) + G y ( i , j + 1 , f ) + G y ( i + 1 , j + 1 , f ) G y ( i + 1 , i , f ) G y ( i , j , f ) ,
H ( i , j , f ) = 1 C ( i , j , f ) = 2 π H ( i , j , f ) = 1 C ( i , j , f ) = 2 π H ( i , j , f ) = 0 otherwise .
pro j x t ( H ) = j = 1 N 1 H & pro j y t ( H ) = i = 1 N 1 H .

Metrics