Abstract

A new method for measuring waveguide propagation loss in silicon nanowires is presented. This method, based on the interplay between traveling ring modes and standing wave modes due to back-scattering from edge roughess, is accurate and can be used for on wafer measurement of test structures. Examples of loss measurements and fitting are reported.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt.49(25), F59–F70 (2010).
    [CrossRef] [PubMed]
  2. S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
    [CrossRef]
  3. D. B. Keck and R. Tynes, “Spectral response of low-loss optical waveguides,” Appl. Opt.11(7), 1502–1506 (1972).
    [CrossRef] [PubMed]
  4. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt.47(35), 6625–6630 (2008).
    [CrossRef] [PubMed]
  5. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
    [CrossRef]
  6. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  7. T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
    [CrossRef]
  8. K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
    [CrossRef]
  9. M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003).
    [CrossRef]
  10. T. Barwicz and H. A. Haus, “Three-dimensional analysis os scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005).
    [CrossRef]
  11. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001).
    [CrossRef]
  12. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
    [CrossRef] [PubMed]
  13. R. E. Collin, Foundation for Microwave Engineering, 2nd ed. (McGraw-Hill, N.Y., 2000).
  14. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
    [CrossRef]
  15. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express16(7), 4621–4630 (2008).
    [CrossRef] [PubMed]

2010

2009

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

2008

2007

2005

2004

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

2003

M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003).
[CrossRef]

2001

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

1997

1972

1968

T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
[CrossRef]

Agarwal, A.

Agarwal,, A. J.

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Barwicz, T.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Bourk, T. R.

T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
[CrossRef]

Carlie, N.

Cerrina, F.

Chu, S. T.

Dainese, M.

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Foresi, L. C.

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Haus, H. A.

Hsin-Chiao, L.

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Hu, J.

Keck, D. B.

Kharadly, M. M. Z.

T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
[CrossRef]

Khorasaninejad, M.

Kimerling,

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Kimerling, L.

Kimerling, L. C.

Laine, J. P.

Lee, K. K.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Lewis, J. E.

T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
[CrossRef]

Lim, D. R.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Little, B. E.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Miller, D. A. B.

Neureuther, A.

M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003).
[CrossRef]

Petit, L.

Qiu, M.

Richardson, K.

Saini, S. S.

Shin, J.

Taebi, S.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Tarasov, V.

Tynes, R.

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Williamson, M.

M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003).
[CrossRef]

Wosinski, L.

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

Zhang, Z.

Appl. Opt.

Appl. Phys. Lett.

K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000).
[CrossRef]

Electron. Lett.

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003).
[CrossRef]

Other

R. E. Collin, Foundation for Microwave Engineering, 2nd ed. (McGraw-Hill, N.Y., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the bus waveguide coupled to a microring. The four input and output field describe propagation in all directions.

Fig. 2
Fig. 2

Experimental measurement of five rings sharing a common bus waveguide. The bus to ring gaps were, left to right, 110nm , 210nm , 310nm , 410nm , 510nm . The radii were of the order of 10μm but slightly different to distinguish the individual spectra. The three spectra from left correspond to an over coupled condition, while the two spectra on the right correspond to an under coupled condition

Fig. 3
Fig. 3

Spectrum of intensity transmission from the bus for a microring with radius of 10μm , gap 320nm (a), 390nm (b), and waveguide loss 1.3 , 1.7 , and 2.1dB/cm .

Fig. 4
Fig. 4

Effect of absorption (α) caused by waveguide donor doping (n) on the transmission spectrum. Blue curve: undoped aveguide, red curve; n = 2 × 1017 cm−3 (α = 2 cm−1), green curve: n = 3 × 1017 cm−3 (α = 3 cm−1), black curve: n = 7 × 1017 cm−3 (α = 5 cm−1).

Fig. 5
Fig. 5

Experimental (red line) and fit (blue line) are shown for three measurements. a) α=2.3dB/cm , ρ=0.008 , t=0.9965 b) α=1.7dB/cm , ρ=0.015 , t=0.9991 c) α=2.1dB/cm , ρ=0.0303 , t=0.9979

Fig. 6
Fig. 6

Comparison of fitting models. Green curve: experimental, blue curve: present model fit, and green curve: double ring fit.

Fig. 7
Fig. 7

Statistics of 64 samples gathered on waveguide loss. Average loss is 1.7dB/cm , standard deviation 0.25dB/cm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 b 2 b 3 b 4 ]=[ 0 0 t ik 0 0 ik t t ik 0 0 ik t 0 0 ][ a 1 a 2 a 3 a 4 ]
a 2 =a b 4 e iφ + ρ c b 2
a 4 =a b 2 e iφ + ρ c b 4
T= b 3 a 1 | a 3 =0 = ta e iφ D t ρ c 2 D 2 1 ρ c 2 ( t D ) 2
R= b 1 a 1 | a 3 =0 = ρ c D t ta e iφ D 1 1 ρ c 2 ( t D ) 2

Metrics