Abstract

The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Fire Administration, http://www.usfa.fema.gov/statistics .
  2. G. Zizak, “Flame emission spectroscopy: fundamentals and applications. Lecture given at the ICS training course on laser diagnostics of combustion processes,” (NILES, University of Cairo, Egypt, 2000).
  3. A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
    [CrossRef]
  4. G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
    [CrossRef]
  5. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
  6. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
    [CrossRef] [PubMed]
  7. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt.45(29), 7610–7616 (2006).
    [CrossRef] [PubMed]
  8. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010).
    [CrossRef] [PubMed]
  9. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express15(16), 10253–10265 (2007).
    [CrossRef] [PubMed]
  10. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
    [CrossRef] [PubMed]
  11. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
    [CrossRef] [PubMed]
  12. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
    [CrossRef] [PubMed]
  13. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett.35(24), 4102–4104 (2010).
    [CrossRef] [PubMed]
  14. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
    [CrossRef]
  15. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
    [CrossRef] [PubMed]
  16. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008).
    [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express14(12), 5168–5177 (2006).
    [CrossRef] [PubMed]
  18. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
    [CrossRef] [PubMed]
  19. L. Onural, 3D Video Technologies: An Overview of Research Trends (SPIE, 2010).
  20. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express20(8), 9109–9121 (2012).
    [CrossRef] [PubMed]
  21. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express19(10), 9192–9200 (2011).
    [CrossRef] [PubMed]
  22. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006).
    [CrossRef] [PubMed]
  23. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
    [CrossRef] [PubMed]
  24. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
    [CrossRef] [PubMed]
  25. E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett.37(15), 3120–3122 (2012).
    [CrossRef] [PubMed]
  26. A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
    [CrossRef]
  27. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
    [CrossRef]
  28. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffused illumination applied to large space reflector metrology [Invited],” Appl. Opt.52(1), A102–A116 (2013).
    [CrossRef] [PubMed]
  29. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013).
    [CrossRef] [PubMed]
  30. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
    [CrossRef] [PubMed]
  31. M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett.33(23), 2737–2739 (2008).
    [CrossRef] [PubMed]
  32. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
    [CrossRef] [PubMed]
  33. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  34. M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012).
    [CrossRef]
  35. X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008).
    [CrossRef]
  36. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A24(6), 1617–1622 (2007).
    [CrossRef] [PubMed]
  37. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007), Chap. 5.

2013 (2)

2012 (6)

2011 (2)

2010 (9)

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010).
[CrossRef] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett.35(24), 4102–4104 (2010).
[CrossRef] [PubMed]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

2008 (7)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008).
[CrossRef]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008).
[CrossRef] [PubMed]

M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett.33(23), 2737–2739 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (3)

2003 (1)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Acem, Z.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

Àgueda, A.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

Alexeenko, I.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013).
[CrossRef] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012).
[CrossRef]

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
[CrossRef] [PubMed]

Barada, D.

Bianco, V.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Blanche, P. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Boulet, P.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

Brooker, G.

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Cai, X.

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008).
[CrossRef]

Callens, N.

Castro, A.

Cho, M.

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

De Nicola, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Depeursinge, C.

Ding, H.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Doyle, D.

Dubois, F.

Everitt, H. O.

Farahi, S.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Ferraro, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett.37(15), 3120–3122 (2012).
[CrossRef] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
[CrossRef] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Finizio, A.

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Frauel, Y.

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
[CrossRef] [PubMed]

García, J.

Geltrude, A.

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett.37(15), 3120–3122 (2012).
[CrossRef] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

Georges, M. P.

Gertrude, A.

Gillette, M. U.

Gregory, D. A.

Grilli, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Heimbeck, M. S.

Hennelly, B. M.

Houdellier, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

Hoyos, M.

Hsieh, W. Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Hüe, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

Hÿtch, M.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

Ida, T.

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Ito, T.

Javidi, B.

Kang, H.

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Katz, B.

Kelner, R.

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Kiire, T.

Kikuchi, Y.

Kim, M. K.

Kurowski, P.

Lechêne, S.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Locatelli, M.

Magistretti, P.

Marquet, P.

Maycock, J.

McDonald, J. B.

Memmolo, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

Meucci, R.

Miccio, L.

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

Mico, V.

Millet, L.

Mir, M.

Miura, J.

Monnom, O.

Moratal, C.

Moser, C.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Näsänen, R.

Naughton, T. J.

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Norwood, R. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Onural, L.

Osten, W.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013).
[CrossRef] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012).
[CrossRef]

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Papadopoulos, I. N.

Parent, G.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

Pastor, E.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

Paturzo, M.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett.37(15), 3120–3122 (2012).
[CrossRef] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
[CrossRef] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

Pedrini, G.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013).
[CrossRef] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012).
[CrossRef]

Pelagotti, A.

Pérez, Y.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

Peyghambarian, N.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Planas, E.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

Poggi, P.

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

Popescu, G.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Psaltis, D.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012).
[CrossRef] [PubMed]

Queeckers, P.

Rachwal, B.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Rogers, J.

Rosen, J.

Sato, Y.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Shaffer, E.

Shimobaba, T.

Siddiqui, O.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Snoeck, E.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

Stockman, Y.

Stoykova, E.

Takenouchi, M.

Thizy, C.

Thomas, J.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Unarunotai, S.

Vandenrijt, J.-F.

Vollheim, B.

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Wang, H.

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008).
[CrossRef]

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Yamaguchi, I.

Yamamoto, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Yamashita, K.

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yaras, F.

Yatagai, T.

Yokota, M.

Yourassowsky, C.

Zalevsky, Z.

Appl. Opt. (4)

Int. J. Therm. Sci. (2)

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010).
[CrossRef]

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010).
[CrossRef]

J. Disp. Technol. (1)

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (2)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Nature (2)

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008).
[CrossRef] [PubMed]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Opt. Commun. (2)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003).
[CrossRef]

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008).
[CrossRef]

Opt. Express (8)

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express15(16), 10253–10265 (2007).
[CrossRef] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008).
[CrossRef] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express14(12), 5168–5177 (2006).
[CrossRef] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express19(10), 9192–9200 (2011).
[CrossRef] [PubMed]

B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express20(8), 9109–9121 (2012).
[CrossRef] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012).
[CrossRef]

Other (5)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007), Chap. 5.

L. Onural, 3D Video Technologies: An Overview of Research Trends (SPIE, 2010).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).

U.S. Fire Administration, http://www.usfa.fema.gov/statistics .

G. Zizak, “Flame emission spectroscopy: fundamentals and applications. Lecture given at the ICS training course on laser diagnostics of combustion processes,” (NILES, University of Cairo, Egypt, 2000).

Supplementary Material (1)

» Media 1: MOV (4785 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of a typical fire scenario where the line of sight is impaired by smoke and flames. Both the naked-eye vision and the thermographic view are blinded by flame emission. Holography at IR can allow clear vision.

Fig. 2
Fig. 2

Experimental set-up: interferometric set-up in lensless off-axis configuration. (BS): beam splitter. (L1, L2): lenses. (VA): variable attenuator. (M1, M2): mirrors.

Fig. 3
Fig. 3

Target imaging through smoke. (a) Metal object in Plexiglas™ box. Images recorded by a standard white-light photo camera before and after letting smoke into the box. (b) Thermographic imaging of the metal object through smoke. (c) Holographic amplitude reconstruction. This confirms that holography has the same capability of IR imaging to see through smoke.

Fig. 4
Fig. 4

Target imaging through smoke. (a) Holographic amplitude reconstruction before numerical processing and relative deviation corresponding to a homogeneous cut of the image (red box in figure). (b) Speckle reduction by processing a time sequence of holograms: multi-look reconstruction and relative deviation improvement. (c) Amplitude histograms: comparison between the single look and the multi-look image.

Fig. 5
Fig. 5

Imaging of a metal object seen through flames of candles. (a) Thermographic acquisition and corresponding image. (b) Holographic acquisition and amplitude reconstruction. Since no lens is needed, the IR energy is distributed over the whole array of camera pixels, avoiding their saturation.

Fig. 6
Fig. 6

Holographic capability of imaging human-size objects. (a) White light image of a plastic mannequin 190 cm tall used as a test target. (b-f) Holographic reconstruction of the plastic human-size mannequin. Holograms acquired using the cylindrical lens setup (b), the scanning set-up (c,d,e) and their superposition (f). Digital holography is suited for both small and big human-size targets, like adults in a room.

Fig. 7
Fig. 7

Imaging of a live human seen through flames. (a) Thermographic image. (Media 1). (b-c) White-light images of a live hand and the man with his arms in a different position. (d) Holographic imaging (Media 1). The flames in this case cover the entire field of view of the recording bolometer.

Fig. 8
Fig. 8

Imaging of a human target behind a flame. Left: SL holographic reconstruction. Right: ML amplitude image.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C= σ μ ,
R Dev ( x,y )= I( x,y ) I ¯ I ¯ ,
Y=a X 1 +b X 2
σ Y 2 = a 2 σ X 1 2 + b 2 σ X 2 2 .
X ˜ = 1 N i=1 N X i
σ X ˜ 2 = 1 N 2 i=1 N σ X i 2 = σ X 2 N .
μ X ˜ = μ X ,
C X ˜ = 1 N σ X i μ X i = 1 N C X i ,

Metrics