Abstract

Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea13(4), 416–422 (2009).
    [CrossRef]
  2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
    [CrossRef]
  3. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express19(8), 7398–7409 (2011).
    [CrossRef] [PubMed]
  4. J. Li, X. Peng, and L. Dong, “Robust fundamental mode operation in a ytterbium-doped leakage channel fiber with an effective area of ~3000µm2,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME3.
  5. C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuBB3.
  6. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett.19(24), 2149–2151 (1994).
    [CrossRef] [PubMed]
  7. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13(13), 4869–4877 (2005).
    [CrossRef] [PubMed]
  8. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32(18), 2671–2673 (2007).
    [CrossRef] [PubMed]
  9. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13(12), 4717–4722 (2005).
    [CrossRef] [PubMed]
  10. D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
    [CrossRef]
  11. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
    [CrossRef]
  13. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Optimization of high performance ultrafast fiber laser systems to >10 GW peak power,” J. Opt. Soc. Am. B27(10), 2051–2060 (2010).
    [CrossRef]
  14. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express16(12), 8876–8886 (2008).
    [CrossRef] [PubMed]
  15. J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B-At. Mol. Opt.41(9), 095401 (2008).
    [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  18. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett.17(21), 1515–1517 (1992).
    [CrossRef] [PubMed]

2012 (1)

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

2011 (2)

2010 (1)

2009 (1)

2008 (2)

2007 (1)

2005 (2)

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

1994 (1)

1992 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Alkeskjold, T. T.

Boyland, A. J.

Broeng, J.

Carstens, H.

Cho, G.

Chong, A.

Chung, S.-H.

Ditmire, T.

Eidam, T.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fermann, M.

Grüner-Nielsen, L.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Hädrich, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Hartl, I.

Hausmann, K.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Imeshev, G.

Jansen, F.

Jauregui, C.

Jeong, Y.-C.

Jespersen, K. G.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Kracht, D.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Kuznetsova, L.

Lægsgaard, J.

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B-At. Mol. Opt.41(9), 095401 (2008).
[CrossRef]

Laurila, M.

Limpert, J.

Liu, Z.

Morgner, U.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Mortag, D.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Neumann, J.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Nilsson, J.

Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea13(4), 416–422 (2009).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Noske, D. U.

Pandit, N.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Payne, D. N.

Perry, M. D.

Rothhardt, J.

Sahu, J. K.

Schimpf, D.

Schimpf, D. N.

Scolari, L.

Seise, E.

Shah, L.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Stuart, B. C.

Stutzki, F.

Taylor, J. R.

Theeg, T.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Tünnermann, A.

Wandt, D.

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

Wise, F.

Wise, F. W.

Zhou, S.

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

J. Phys. B-At. Mol. Opt. (1)

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B-At. Mol. Opt.41(9), 095401 (2008).
[CrossRef]

Opt. Commun. (2)

D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (3)

J. Li, X. Peng, and L. Dong, “Robust fundamental mode operation in a ytterbium-doped leakage channel fiber with an effective area of ~3000µm2,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME3.

C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuBB3.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle scheme of the all-in-fiber passively mode-locked oscillator: CFBG – chirped fiber Bragg grating, WDM – wavelength division multiplexer, SAM – saturable absorber mirror.

Fig. 2
Fig. 2

Experimental FCPA setup. The main structural parts are: oscillator, pre-amplifier 1, AOM – acousto-optic modulator, stretcher, pre-amplifier 2, power amplifier, and compressor.

Fig. 3
Fig. 3

(a) Autocorrelation function of the oscillator pulses (red circles – experimental data; solid black – numerical calculations). (b) Spectrum of the oscillator pulses (solid red – experimental data; solid black – numerical calculations).

Fig. 4
Fig. 4

(a) Temporal profile of the stretched pulses (solid red – experimental data; solid black – numerical calculations) and chirp profile of numerically calculated pulses (dashed black). (b) Spectrum of the stretched pulses (with inclusion of residual low-energy pulses) (solid red – experimental data; solid black – numerical calculations) and calculated spectral group delay curve after linear part (caused by GVD) is numerically compensated (dashed black).

Fig. 5
Fig. 5

(a) Temporal profile of the stretched pulses after amplification to the 100 µJ pulse energy (solid red – experimental data; solid black – numerical calculations) Inset – Measured polarization extinction ratio at power amplifier output as a function of pulse energy. (b) Spectrum of the stretched pulses after amplification to the 100 µJ pulse energy (solid red – experimental data; solid black – numerical calculations). Inset – the experimental pulse spectrum in logarithmic scale.

Fig. 6
Fig. 6

(a) Numerically calculated spectral group delay curves (when GVD is compensated) before (solid red) and after amplification (solid black). (b) Autocorrelations of the compressed pulses (solid red – experimental data; solid black – numerical calculations). Inset – the experimental pulse spectrum at the power amplifier output (blue) and the experimental pulse spectrum after the spectral filtering (orange).

Fig. 7
Fig. 7

1/e2 beam radius of the compressor output beam versus distance from the waist location. Measured at the low output pulse energy (a) and at the high output pulse energy (50 µJ) (b). Inset – typical beam profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 2 2 A t 2 β 3 6 3 A t 3 = g(ω)a 2 A+iγ | A | 2 A,

Metrics