Abstract

We describe calculations that address the suitability at using silicon-germanium multiple quantum well (MQW) modulators in dense wavelength division multiplexed (DWDM) short reach optical interconnects that vary over a significant temperature range. Our calculations indicate that there is a tradeoff between the number of channels, the temperature range and laser power required. Twenty to forty DWDM channels at 100 GHz and 50 GHz channel spacing is possible in DWDM links with a ∼ 12° temperature range with less than a 1 dB laser power penalty compared to the optimum single channel, single temperature case. The same number of channels can be operated over a wider 37° temperature range with laser power penalties of 3 dB. It shows that, even for DWDM systems, silicon-germanium modulators might provide an alternative to ring and disk resonant modulators without the need for stringent (≪ 1°C) temperature control.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  3. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010).
    [CrossRef] [PubMed]
  4. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
    [CrossRef]
  5. A. Krishnamoorthy, “Focus Issue on Photonic Materials and Integration Architectures,” IEEE Photon. J.3(3), 564 –626 (2011).
    [CrossRef]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
    [CrossRef] [PubMed]
  7. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).
  8. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).
  9. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).
  10. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
    [CrossRef] [PubMed]
  11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
    [CrossRef]
  12. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011).
    [CrossRef] [PubMed]
  13. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
    [CrossRef] [PubMed]
  14. S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
    [CrossRef]
  15. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2), A293–A308 (2012).
    [CrossRef]
  16. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt.32(26), 5153–5171 (1993).
    [CrossRef] [PubMed]
  17. M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).
  18. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett.14(2), 146–148 (1989).
    [CrossRef] [PubMed]
  19. G. P. Agarwal, Fiber-Optic Communication Systems Wiley series in Microwave and Optical Engineering, 4th ed. (Wiley, 2010).
    [CrossRef]
  20. A. Emami-Neyestanak, “Design of CMOS receivers for parallel optical interconnects,” Ph.D. thesis, Stanford University (2004).
  21. A. L. Lentine and F. A. P. Tooley, “Relationships between speed and tolerances for self-electro-optic-effect devices,” Appl. Opt.33(8), 1354–1367 (1994).
    [CrossRef] [PubMed]
  22. R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
    [CrossRef]
  23. D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
    [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).
  25. S. M. Sze, The Physics of Semiconductor Devices (Wiley, New York, 1969).
  26. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
    [CrossRef]
  27. D. Wolpert and P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems, 1st ed. (Springer, 2012).
    [CrossRef]
  28. D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
    [CrossRef]
  29. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
    [CrossRef]
  30. S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).
  31. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
    [CrossRef]
  32. A. W.-L. Fang, “Silicon evanascent lasers,” Ph.D. thesis, University of California Santa Barbara (2008).
  33. “IGOR Pro technical graphing and analysis,” (2010). URL www.wavemetrics.com .
  34. “Python programming language - Official website,” URL www.python.org .

2012 (4)

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
[CrossRef] [PubMed]

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2), A293–A308 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

2011 (3)

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
[CrossRef]

A. Krishnamoorthy, “Focus Issue on Photonic Materials and Integration Architectures,” IEEE Photon. J.3(3), 564 –626 (2011).
[CrossRef]

2010 (2)

2008 (2)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

2007 (1)

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
[CrossRef]

2006 (1)

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

2005 (2)

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

1995 (1)

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

1994 (1)

1993 (1)

1989 (1)

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

1984 (1)

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

Agarwal, G. P.

G. P. Agarwal, Fiber-Optic Communication Systems Wiley series in Microwave and Optical Engineering, 4th ed. (Wiley, 2010).
[CrossRef]

Ampadu, P.

D. Wolpert and P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems, 1st ed. (Springer, 2012).
[CrossRef]

Asghari, M.

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Biberman, A.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Bolten, J.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Brubaker, J. L.

Chan, J.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

Chemla, D.

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

Chen, L.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Claussen, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

Cloonan, T. J.

Crisci, R. J.

Cunningham, J.

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

Dong, P.

Edwards, E.

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Emami-Neyestanak, A.

A. Emami-Neyestanak, “Design of CMOS receivers for parallel optical interconnects,” Ph.D. thesis, Stanford University (2004).

Fang, A. W.-L.

A. W.-L. Fang, “Silicon evanascent lasers,” Ph.D. thesis, University of California Santa Barbara (2008).

Fei, E.

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Feng, D.

Feng, N.-N.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).

Fong, J.

Gammon, D.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Gossard, A.

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

Gotzinger, S.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Gu, T.

M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).

Guha, B.

Haney, M.

M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).

Harris, J.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Hinterlong, S. J.

Hinton, H. S.

Kamins, T.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Katzer, D. S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Kerbis, E.

Khan, M. H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
[CrossRef]

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Krishnamoorthy, A.

A. Krishnamoorthy, “Focus Issue on Photonic Materials and Integration Architectures,” IEEE Photon. J.3(3), 564 –626 (2011).
[CrossRef]

Krishnamoorthy, A. V.

Kung, C.-C.

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Kyono, C. S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Lentine, A. L.

Li, G.

Liang, H.

Liao, S.

Lipson, M.

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

Luo, Y.

Mahrt, R.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

McCormick, F. B.

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Miller, D.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2), A293–A308 (2012).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett.14(2), 146–148 (1989).
[CrossRef] [PubMed]

Moll, N.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Mollenhauer, T.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Moormann, C.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Moresco, M.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Morrison, R. L.

Nair, R.

M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

Novotny, R. A.

Offrein, B.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Padmaraju, K.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).

Preston, K.

Qi, M.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
[CrossRef]

Qian, W.

Reinecke, T. L.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Ren, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Rong, Y.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Roth, J.

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Rudin, S.

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Sasian, J. M.

Schaevitz, R.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schonenberger, S.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Shafiiha, R.

Shen, H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
[CrossRef]

Smith, P.

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Stoferle, T.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Stojanovic, V.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Sun, C.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Sze, S. M.

S. M. Sze, The Physics of Semiconductor Devices (Wiley, New York, 1969).

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).

Timurdogan, E.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Tooley, F. A. P.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
[CrossRef]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
[CrossRef] [PubMed]

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

Vetterling, W. J.

W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).

Wahl, P.

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

Wahlbrink, T.

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Walker, S. L.

Wang, X.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
[CrossRef]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
[CrossRef] [PubMed]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

Wiegmann, W.

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

Wolpert, D.

D. Wolpert and P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems, 1st ed. (Springer, 2012).
[CrossRef]

Xiao, S.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
[CrossRef]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

Zheng, X.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011).
[CrossRef]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012).
[CrossRef]

D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984).
[CrossRef]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006).
[CrossRef]

IEEE Photon. J. (1)

A. Krishnamoorthy, “Focus Issue on Photonic Materials and Integration Architectures,” IEEE Photon. J.3(3), 564 –626 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012).
[CrossRef]

Nat. Photonics (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008).
[CrossRef]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (1)

D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

Proc. SPIE (1)

S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).

Other (12)

A. W.-L. Fang, “Silicon evanascent lasers,” Ph.D. thesis, University of California Santa Barbara (2008).

“IGOR Pro technical graphing and analysis,” (2010). URL www.wavemetrics.com .

“Python programming language - Official website,” URL www.python.org .

D. Wolpert and P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems, 1st ed. (Springer, 2012).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).

S. M. Sze, The Physics of Semiconductor Devices (Wiley, New York, 1969).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).

G. P. Agarwal, Fiber-Optic Communication Systems Wiley series in Microwave and Optical Engineering, 4th ed. (Wiley, 2010).
[CrossRef]

A. Emami-Neyestanak, “Design of CMOS receivers for parallel optical interconnects,” Ph.D. thesis, Stanford University (2004).

M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

One directional photonic link showing laser, modulator, detector, and optical loss. The graphic shows the photocurrents for the two states and the ideal receiver threshold between the states. The driving function for the output of the TIA is proportional to the difference between the photocurrent and the threshold for the two states, the exact formulation (e. g. is it a driving current, driving voltage, in what stage, etc.) depending on the details of the receiver design.

Fig. 2
Fig. 2

Experimental (light blue) and fitted (black) electroabsorption curves at bias values of V = 0, 1, 2 and 3 V. The fit was performed usingEq. (2) with the fitting parameters listed in Table 1.

Fig. 3
Fig. 3

Calculated absorption spectrum of quantum well stack in reference [13] at temperatures of 300 K, 331 K and 363 K. The MQW structure consists of 10 periods of 10 nm Ge quantum wells between 16 nm Si0.15Ge0.85 barriers. Note that the spectrum at 300 K is fitted to experimental data at same temperature. The spectra at higher temperatures are calculated using the modeling described in section 3.2.

Fig. 4
Fig. 4

Colormaps of the figure of merit (FOM = (THTL)/2) as a function of temperature and wavelength for on voltage values of 1V ≤ V ≤ 4V and modulator lengths of L = 4μm and 8μm.

Fig. 5
Fig. 5

(a) The insertion loss (IL) and (b) the extinction ratio (ER) as a function of wavelength and temperature for a 5μm long modulator device. For this figure the IL and the ER are defined as IL = 10log10 [(TH + TL)/2] and ER = 10log10 (TH/TL). The IL and ER provide an alternate view of modulator performance by breaking down the FOM into two metrics corresponding roughly to the average loss (IL) and on/off ratio (ER).

Fig. 6
Fig. 6

Optical bandwidth as a function of temperature variation at four values (0.125, 0.15, 0.175, 0.2) of the FOM and for a modulator length of 5μm. The number of channels can be approximated by dividing the optical bandwidth by the channel spacing and adding one.

Fig. 7
Fig. 7

Predicted zero-applied-bias absorption spectrum of SiGe MQW’s at 360 K calculated using values of exciton-phonon coupling parameter of γ = 2.0, 5.0 and 10.0 meV. The thick light-blue line is the experimental zero-bias absorption at 300K for comparison.

Tables (1)

Tables Icon

Table 1: Values of the fitting parameters in Eq. (2) and the fitting uncertainty.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ph = P laser T mod T optics R PD
α ( E ) = α hh exp [ ( E E hh ) 2 2 W hh 2 ] + α lh exp [ ( E E lh ) 2 2 W lh 2 ] + α c 1 + exp ( E c E W c ) 2 1 + exp ( 2 π R y | E c E | )
E g ( T ) E g ( 0 ) = α T 2 β + T ,
W i ( T ) W i ( 0 ) = γ i exp ( E LO k T ) 1 ,
FOM 1 2 ( T H T L ) = 1 2 [ e α ( λ , T , V ON ) L e α ( λ , T , V OFF ) L ]

Metrics