Abstract

We report on monitoring the mode power in dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) by measuring the resistance of gold electrodes, supporting the DLSPPW mode propagation, with internal (on-chip) Wheatstone bridges. The investigated DLSPPW configuration consisted of 1-μm-thick and 10-μm-wide cycloaliphatic acrylate polymer ridges tapered laterally to a 1-μm-wide ridge placed on a 50-nm-thin and 4-um wide gold stripe, all supported by a ~1.7-µm-thick Cytop layer deposited on a Si wafer. The fabricated DLSPPW power monitors were characterized at telecom wavelengths, showing very high responsivities reaching up to ~6.4 μV/μW (for a bias voltage of 245 mV) and the operation bandwidth exceeding 40 kHz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  2. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
    [CrossRef]
  3. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proceedings of the IEE97(7), 1166–1185 (2009).
    [CrossRef]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).
  5. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton,” Phys. Rev. B75(24), 245405 (2007).
    [CrossRef]
  6. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
    [CrossRef]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
    [CrossRef]
  8. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24(11), 4391–4402 (2006).
    [CrossRef]
  9. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010).
    [CrossRef] [PubMed]
  10. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010).
    [CrossRef] [PubMed]
  11. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and Directional Coupler Switches,” Nanotechnology23(44), 444008 (2012).
    [CrossRef] [PubMed]
  12. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zehnder interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express20(15), 16300–16309 (2012).
    [CrossRef]
  13. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(4), 2972–2978 (2011).
    [CrossRef] [PubMed]
  14. S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
    [CrossRef]
  15. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
    [PubMed]

2012

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and Directional Coupler Switches,” Nanotechnology23(44), 444008 (2012).
[CrossRef] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zehnder interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express20(15), 16300–16309 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

2011

2010

2009

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proceedings of the IEE97(7), 1166–1185 (2009).
[CrossRef]

2008

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

2007

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

2006

2005

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
[CrossRef]

2004

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

1992

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

Andersen, T. B.

Apostolopoulos, D.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Avramopoulos, H.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Baus, M.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Berini, P.

Bozhevolnyi, S. I.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zehnder interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express20(15), 16300–16309 (2012).
[CrossRef]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and Directional Coupler Switches,” Nanotechnology23(44), 444008 (2012).
[CrossRef] [PubMed]

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(4), 2972–2978 (2011).
[CrossRef] [PubMed]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010).
[CrossRef] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

Dereux, A.

Gagnon, G.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).

Gosciniak, J.

Hassan, K.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

Kalavrouziotis, D.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Kjelstrup-Hansen, J.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Kumar, A.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(4), 2972–2978 (2011).
[CrossRef] [PubMed]

Lahoud, N.

Leosson, K.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Markey, L.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).

Massenot, S.

Mattiussi, G. A.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proceedings of the IEE97(7), 1166–1185 (2009).
[CrossRef]

Nikolajsen, T.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Papaioannou, S.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Pleros, N.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Tekin, T.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Thomas, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).

Volkov, V. S.

Vyrsokinos, K.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Weeber, J.-C.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Appl. Phys. Lett.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Electron. Lett.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

IEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic network-on-chip for future generations of chip multiprocessors,” IEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol.

Nanotechnology

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and Directional Coupler Switches,” Nanotechnology23(44), 444008 (2012).
[CrossRef] [PubMed]

Nat. Photonics

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomas, “Silicon optical modulators,” Nat. Photonics4, 518529 (2010).

Opt. Commun.

S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1–3), 51–56 (2005).
[CrossRef]

Opt. Express

Phys. Rev. B

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton,” Phys. Rev. B75(24), 245405 (2007).
[CrossRef]

Proceedings of the IEE

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proceedings of the IEE97(7), 1166–1185 (2009).
[CrossRef]

Sci Rep

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of the end-fire in/out coupling arrangement showing cleaved PM single-mode optical fibers and a fabricated sample with power monitor structure. (b) Schamatic layout of the investigated power monitor with a microscope image of the actual structure (containing a 1-μm-wide PMMA ridge placed on a 4-μm-wide gold stripe) being incorporated, using an internal Wheatstone bridge configuration. (s) Cross-section of the fabricated structure with a Cyclomer ridge on top of a gold stripe deposited on an underlying Cytop layer with (d) a characteristic mode effective index and propagation length.

Fig. 2
Fig. 2

(a) Signal voltage measured as a function of the input (with respect to the DLSPPW) optical power (Pin), whose level was estimated from the insertion fiber-to-fiber loss for structure with Cyclomer ridge and Cytop underlying layer for the bias voltage of 255 mV at wavelength 1550 nm (measured and calculated). Slope of linear fits to the experimental data provided the responsivity for each wavelength. (b) Signal voltage as a function of the frequency of modulation of the input laser radiation for structure with Cyclomer ridge. Duty ratio of 50% was kept constant through the conducted measurements.

Fig. 3
Fig. 3

(a) Signal voltage with two bias voltages (Vb = 200 mV and Vb = 245 mV) as a function of the light wavelength and the corresponding responsivity and signal transmission as a function of the wavelength for bias voltage Vb = 200 mV (b) and Vb = 245 mV (c) and at the frequency of 200 Hz.

Fig. 4
Fig. 4

(a) Signal voltage increases with reference to the propagating mode (light ON) and a signal voltage in the absence of the propagating mode (light OFF) as a function of the frequency of the modulation of the bias voltage (AC voltage) for two AC voltage – Vb = 50 mV and Vb = 100 mV showing a frequency cutoff of 40 kHz. (b) Signal voltage increases and transmission of the signal as a function of the wavelength for the AC voltage amplitude of 100 mV and modulated at the frequency of 1 kHz. In the absence of the propagating mode (light OFF) the signal voltage was −263.2 μV.

Fig. 5
Fig. 5

(a) Temporal response of the transmitted signal (blue curve) for AC voltage amplitude of 428 mV and modulated at the frequency of 1 kHz with the exponential fit (red curve) showing the rise and fall time of ~15 μs. (b) Transmitted signal amplitude and average signal as a function of wavelengths for AC voltage amplitude of 284 mV and 428 mV and modulated at the frequency of 1 kHz. (c) Power dissipated by the metal stripe supporting the DLSPP mode as a function of the bias voltage. (d) Cyclomer ridge temperature increases and signal voltage increases (Vs(ON)-Vs(OFF)) as a function of a bias voltage. The ridge temperature increases calculated under assumption that only 30% of dissipated power by metal stripe supported the DLSPP waveguide is transferred to the ridge.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔT( t )= R th P in [ 1exp( α pr L ) ][ 1exp( t/τ ) ]
R( P in )=R( P in =0 )[ 1+ α th ΔT( t ) ]
V s ( P in )= 1 2 α th ΔT 2+ α th ΔT V b
V s ( P in =0 )= R x R 1 R 2 R 3 ( R x + R 3 )( R 2 + R 1 ) V b

Metrics