Abstract

The three-dimensional (3D) and two-dimensional (2D) chiral metamaterials (CMMs) have been proved to exhibit circular dichroism and circular conversion dichroism, respectively. The layer-by-layer chiral metamaterials, as a category of 3D CMMs, are expected to show the same properties as bulk 3D structures (e.g. helices). However, in this paper, we demonstrated that the layer-by-layer CMMs exhibit circular dichroism and circular conversion dichroism simultaneously by using both theoretical and experimental methods. This work showed that asymmetric transmissions of circular polarizations can also be observed in layer-by-layer CMMs. Moreover, we provided some necessary requirements for the existing of asymmetric transmissions in layer-by-layer CMMs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “A Chiral Route to Negative Refraction,” Science306(5700), 1353–1355 (2004).
    [CrossRef] [PubMed]
  2. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
    [CrossRef] [PubMed]
  3. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
    [CrossRef] [PubMed]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  5. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
    [CrossRef] [PubMed]
  6. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
    [CrossRef]
  7. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  8. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
    [CrossRef]
  9. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
    [CrossRef]
  10. M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett.32(17), 2547–2549 (2007).
    [CrossRef] [PubMed]
  11. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
    [CrossRef] [PubMed]
  12. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  13. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
    [CrossRef]
  14. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
    [CrossRef]
  15. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
    [CrossRef]
  16. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
    [CrossRef]
  17. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
    [CrossRef]
  18. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
    [CrossRef] [PubMed]
  19. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
    [CrossRef]

2012 (2)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

2011 (5)

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

2010 (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

2009 (3)

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

2007 (2)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett.32(17), 2547–2549 (2007).
[CrossRef] [PubMed]

2006 (2)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

2004 (2)

J. B. Pendry, “A Chiral Route to Negative Refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

2001 (1)

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Cao, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Chigrin, D. N.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Decker, M.

Fan, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Giessen, H.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Han, J.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Hentschel, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Kremers, C.

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

Kriegler, C. E.

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Li, F.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Li, H.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Linden, S.

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
[CrossRef]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “A Chiral Route to Negative Refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
[CrossRef]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Ruther, M.

Schäferling, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
[CrossRef]

Thiel, M.

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

von Freymann, G.

Wang, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Wegener, M.

Wei, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Wu, C.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Yu, X.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Zhou, J.

Zhukovsky, S. V.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Appl. Phys. B (1)

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94(13), 131901 (2009).
[CrossRef]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett.78(4), 498 (2001).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

J. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

Nano Lett. (1)

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett.12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Opt. Lett. (3)

Phys. Rev. A (2)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

Science (1)

J. B. Pendry, “A Chiral Route to Negative Refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electromagnetic manifestations of chirality in (a) 3D chiral metamaterials; (b) 2D chiral metamaterials; (c) layer-by-layer chiral metamaterials.

Fig. 2
Fig. 2

The schematic diagram of experiment setups.

Fig. 3
Fig. 3

The schematic diagram and photographs of the layer-by-layer CMMs stacked with planar non-chiral structures with the structure parameters of l = 12.5 mm, w = 3 mm and d = 6 mm.

Fig. 4
Fig. 4

The simulation and experiment results of transmission coefficients of the layer-by-layer CMMs stacked with planar non-chiral structures for forward and backward propagations.

Fig. 5
Fig. 5

The schematic diagram and photographs of the layer-by-layer CMMs stacked with planar chiral structures with the structure parameters of l1 = 10 mm, l2 = 12 mm, θ = 45°, w = 0.7 mm and d = 6 mm.

Fig. 6
Fig. 6

The simulation and experiment results of transmission coefficients of the layer-by-layer CMMs stacked with planar chiral structures for forward and backward propagations.

Fig. 7
Fig. 7

The schematic diagram and photographs of the layer-by-layer CMMs stacked with planar chiral structures.

Fig. 8
Fig. 8

The simulation and experiment results of transmission coefficients of the reconfigured layer-by-layer CMMs stacked with planar chiral structures for forward and backward propagations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ^ circ =( T ++ T + T + T )= 1 2 ( T xx + T yy +i( T xy T yx ) T xx T yy i( T xy + T yx ) T xx T yy +i( T xy + T yx ) T xx + T yy i( T xy T yx ) )
ΔT= | T + | 2 | T + | 2
( t x t y )=( T xx T xy T yx T yy )( i x i y )= T ^ ( i x i y )
T ^ b =( T xx T yx T xy T yy )
T ^ cicr b = 1 2 ( T xx + T yy +i( T xy T yx ) T xx T yy +i( T xy + T yx ) T xx T yy i( T xy + T yx ) T xx + T yy i( T xy T yx ) )

Metrics