Abstract

We numerically investigate the polarization-dependent coupling in dual-core photonic crystal fibers (PCFs) selectively filled with gold wires in air holes. It is shown that the even and odd supermodes exhibit significantly different dispersion and loss when one gold wire is filled in between two cores. The enhanced birefringence and polarization-dependent attenuation of the supermodes support the separation of two orthogonally polarized components as well as polarization-dependent transmissions with a high degree of polarization in gold-filled dual core PCFs. Our study suggests that a gold-filled PCF coupler is a new possibility for applications on polarization beam splitters and polarizers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  2. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  3. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9(13), 698–713 (2001).
    [CrossRef] [PubMed]
  4. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) Vol. 70, of 2002 OSA Technical Digest Series, Optical Fiber Communication Conference, Postconference Edition (Optical Society of America, 2002), pp. 466–468.
  5. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  6. G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
    [CrossRef]
  7. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
    [CrossRef]
  8. P. Li, J. Zhao, and X. Zhang, “Nonlinear coupling in triangular triple-core photonic crystal fibers,” Opt. Express18(26), 26828–26833 (2010).
    [CrossRef] [PubMed]
  9. Y. Zhu, P. Shum, H. W. Bay, X. Chen, C. H. Tan, and C. Lu, “Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber,” Opt. Lett.29(22), 2608–2610 (2004).
    [CrossRef] [PubMed]
  10. X. Fang, M. Hu, C. Xie, Y. Song, L. Chai, and C. Wang, “High pulse energy mode-locked multicore photonic crystal fiber laser,” Opt. Lett.36(6), 1005–1007 (2011).
    [CrossRef] [PubMed]
  11. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
    [CrossRef] [PubMed]
  12. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
    [CrossRef]
  13. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
    [CrossRef] [PubMed]
  14. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
    [CrossRef]
  15. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011).
    [CrossRef] [PubMed]
  16. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express19(4), 3799–3808 (2011).
    [CrossRef] [PubMed]
  17. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett.37(14), 2946–2948 (2012).
    [CrossRef] [PubMed]
  18. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  20. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
    [CrossRef] [PubMed]
  21. M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
    [CrossRef] [PubMed]
  22. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
    [CrossRef] [PubMed]

2012 (2)

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett.37(14), 2946–2948 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

2008 (6)

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

2007 (1)

2006 (2)

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Alkeskjold, T.

Anawati, A.

Bay, H. W.

Bian, B.

Bird, D.

Birks, T. A.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Bjarklev, A.

Broeng, J.

Chai, L.

Chen, X.

Cox, F. M.

Eggleton, B.

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
[CrossRef] [PubMed]

Fang, X.

George, A.

Gong, Y.

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Hale, A.

Hermann, D.

Hou, J.

Hu, J.

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Hu, M.

Joly, N. Y.

Kerbage, C.

Knight, J. C.

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Koshiba, M.

Kuhlmey, B. T.

Lægsgaard, J.

Large, M. C. J.

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
[CrossRef] [PubMed]

Lee, H. W.

Li, J.

Li, P.

Liu, D.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Lu, C.

Lu, J.

Maier, S.

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
[CrossRef] [PubMed]

Nagasaki, A.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Prill Sempere, L.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Ren, G.

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Russell, P. St. J.

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett.37(14), 2946–2948 (2012).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Russell, R. F.

Saitoh, K.

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett.37(14), 2946–2948 (2012).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

Shi, Y.

Shum, P.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Y. Zhu, P. Shum, H. W. Bay, X. Chen, C. H. Tan, and C. Lu, “Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber,” Opt. Lett.29(22), 2608–2610 (2004).
[CrossRef] [PubMed]

Song, Y.

Tan, C. H.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Uebel, P.

Wang, C.

Wang, G.

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Wang, R.

Westbrook, P.

Windeler, R.

Wu, S. T.

Xia, L.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Xie, C.

Yu, X.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Zhang, S.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Zhang, X.

Zhang, Y.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Zhang, Z.

Zhao, J.

Zhu, Y.

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Electron. Lett. (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fiber,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

IEEE Photon. J. (1)

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun.281(6), 1598–1606 (2008).
[CrossRef]

Opt. Express (9)

T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9(13), 698–713 (2001).
[CrossRef] [PubMed]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
[CrossRef] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

P. Li, J. Zhao, and X. Zhang, “Nonlinear coupling in triangular triple-core photonic crystal fibers,” Opt. Express18(26), 26828–26833 (2010).
[CrossRef] [PubMed]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express19(4), 3799–3808 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Other (2)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) Vol. 70, of 2002 OSA Technical Digest Series, Optical Fiber Communication Conference, Postconference Edition (Optical Society of America, 2002), pp. 466–468.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of PCF with gold microwire; (b)–(d) configurations of single-core PCF filled with a gold wire close to the core and dual-core PCFs filled with gold wires between two cores at the intervals of D=2Λ and D=3Λ, respectively.

Fig. 2
Fig. 2

Dispersion and loss spectra of x- (blue lines) and y-polarized (red lines) core modes in (a) single-core and (b) dual-core PCFs (short dashed lines: even supermodes; solid lines: odd supermodes) filled with a gold wire. The dashed, dotted, and thin (gray) lines represent the silica, the fundamental guided modes in the unfilled PCFs, and the SPP modes (m=1, 2, 3) on an isolated gold wire embedded in silica surrounded by air-hole lattice, respectively. The insets are the close-up view of m=3 anti-crossing points.

Fig. 3
Fig. 3

Axial Poynting vector distributions of the even and odd supermodes as well as the SPP modes at (a) 766 nm and (b) 1076 nm. The SPP modes are excited on an isolated gold wire embedded in silica surrounded by air-hole lattice. The axial Poynting vectors are displayed as log10(Sz). The arrows indicate the instantaneous electric-field orientation.

Fig. 4
Fig. 4

(a) Dispersion and (b) loss spectra of x- (blue lines) and y-polarized (red lines) supermodes in a D=3Λ dual-core PCF filled with two gold wires into the air holes between two cores (dashed lines: even supermodes; solid lines: odd supermodes). Inset: close-up view of loss spectrum. (A, B, C, D correspond to the peaks at λ=1040 nm, 1075 nm, 1080 nm, and 1110 nm, respectively.)

Fig. 5
Fig. 5

(a) Coupling length (dotted lines) of x- (circle) and y-polarized (square) components, and their ratio (solid line) vs. wavelength; (b) transmissions of x- (thin lines) and y-polarized (thick lines) components in two cores vs. propagation length. Inset: Ratio between the minimum and the maximum transmissions of two orthogonally polarized components after propagating L0.

Fig. 6
Fig. 6

(a) Transmissions of x- (thin lines) and y-polarized (thick lines) components in a PCF filled with two gold wires between two cores vs. propagation length at wavelength 1330nm; (b) loss spectra of the two orthogonally even (dashed lines) and odd (solid lines) supermodes. (A, 1032nm; B, 1068nm; C, 1069nm; D, 1093nm). Inset: schematic transverse structures of PCF; (c) transmissions of x- (thin lines) and y-polarized (thick lines) components in PCF as shown in the inset of (b) vs. propagation length at λ = 1030nm.

Tables (1)

Tables Icon

Table 1 Coupling Lengths of Gold Wire-filled Dual-core PCF Couplers at 1330 nm and 1550 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d dz u e,o ( z )=i β e,o u e,o ( z ),

Metrics