Abstract

Metamaterials have been previously studied for their ability to tailor the dispersive IR emissivity of a surface. Here, we investigate two metamaterial structures based on an electromagnetic band-gap surface and a dielectric resonator array for use as near-IR emitters with custom angle selectivity. A genetic algorithm is successfully employed to optimize the metamaterial structures to have minimum emissivity in the normal direction and high emissivity at custom off-normal angles specified by the designer. Two symmetry conditions are utilized to achieve emissivity patterns that are azimuthally stable or distinct in the two orthogonal plane cuts.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
    [CrossRef] [PubMed]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  3. M. D. Griffin and J. R. French, Space Vehicle Design, 2nd ed. (AIAA, 2004).
  4. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
    [CrossRef] [PubMed]
  5. S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
    [CrossRef]
  6. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).
  7. D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
    [CrossRef]
  8. K. S. Friis and O. Sigmund, “Robust topology design of periodic grating surfaces,” J. Opt. Soc. Am. B29(10), 2935–2943 (2012).
    [CrossRef]
  9. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
    [CrossRef]
  10. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  11. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
    [CrossRef]

2012

2011

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

2010

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
[CrossRef] [PubMed]

2008

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

2006

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

1999

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

1998

Boreman, G.

Bossard, J. A.

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Djurišic, A. B.

Eibert, T. F.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Elazar, J. M.

Friis, K. S.

Ginn, J.

Jackson, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Kern, D. J.

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Krenz, P.

Lail, B.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Majewski, M. L.

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Rakic, A. D.

Shelton, D.

Sigmund, O.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Volakis, J. L.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Wilton, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

ACS Nano

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

S. Yun, J. A. Bossard, T. S. Mayer, and D. H. Werner, “Angle and polarization tolerant midinfrared dielectric filter designed by genetic algorithm optimization,” Appl. Phys. Lett.96(22), 223101 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Other

M. D. Griffin and J. R. French, Space Vehicle Design, 2nd ed. (AIAA, 2004).

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Metasurface structures used to achieve custom angular emissivity. (a) Electromagnetic bandgap (EBG) structure with a patterned lossy metal screen backed with dielectric and metallic ground plane layers and (b) a dielectric resonator array backed by a metallic ground plane.

Fig. 2
Fig. 2

Symmetry conditions utilized for azimuthal emissivity control. (a) 8-fold symmetry is used for azimuth stability and (b) 4-fold symmetry is used for achieving distinct responses in the two orthogonal plane cuts.

Fig. 3
Fig. 3

Flowchart showing the genetic algorithm synthesis procedure used to evolve angle-selective emitter designs.

Fig. 4
Fig. 4

GA optimized Au and polyimide EBG emitter with azimuthal stability. (a) 3D unit cell and (b) 3x3 tiling.

Fig. 5
Fig. 5

Near-IR emissivity patterns at λ = 1.55µm for the EBG emitter design in Fig. 4 showing low emissivity in the normal direction and high off-normal emissivity at θ = 40°. (a) Total emissivity for angle cuts at φ = 0°, 15°, 30°, and 45° are shown as well as 3D patterns for (b) TE and (c) TM waves.

Fig. 6
Fig. 6

Wavelength dependence of the emissivity for the EBG emitter design in Fig. 4 at each of the optimized angles predicted by (a) FE-BI and (b) Ansoft HFSS.

Fig. 7
Fig. 7

GA optimized Au and polyimide EBG emitter with 4-fold symmetry. (a) 3D unit cell and (b) 3x3 tiling.

Fig. 8
Fig. 8

Near-IR emissivity patterns at λ = 1.55µm for the EBG emitter design in Fig. 7 showing low emissivity in the normal direction and high off-normal emissivity at θ = 40° in the φ = 0° plane cut. (a) Angle cuts at φ = 0°,90° are shown as well as 3D patterns for (b) TE and (c) TM waves.

Fig. 9
Fig. 9

GA optimized a-Ge and Au dielectric resonator emitter with azimuthal stability. (a) 3D unit cell and (b) 3x3 tiling.

Fig. 10
Fig. 10

Near-IR emissivity patterns at λ = 1.55µm for dielectric resonator design in Fig. 9 showing low emissivity in the normal direction and high off-normal emissivity at θ = 40°. (a) Total emissivity patterns for angle cuts at φ = 0°, 15°, 30°, and 45° are shown as well as 3D patterns for (b) TE and (c) TM waves.

Fig. 11
Fig. 11

Wavelength dependence of the emissivity for the dielectric resonator emitter design in Fig. 9 at each of the optimized angles predicted by (a) FE-BI and (b) Ansoft HFSS.

Fig. 12
Fig. 12

GA optimized a-Ge and Au dielectric resonator emitter with 4-fold symmetry. (a) 3D unit cell and (b) 3x3 tiling.

Fig. 13
Fig. 13

Near-IR emissivity patterns at λ = 1.55µm for dielectric resonator design in Fig. 12 showing low emissivity in the normal direction and high off-normal emissivity at θ = 40° in the φ = 0° plane cut. (a) Angle cuts at φ = 0°,90° are shown as well as 3D patterns for (b) TE and (c) TM waves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε=A=1RT,
Cost= TE,TM [ C l ( θ,φ ) l ( ε ) 2 + ( θ,φ ) h ( 1.0ε ) 2 ]

Metrics