Abstract

Absorbance modulation is an approach that enables the localization of light to deep sub-wavelength dimensions by the use of photochromic materials. In this article, we demonstrate the application of absorbance modulation on a transparent (quartz) substrate, which enables patterning of isolated lines of width 60nm for an exposure wavelength of 325nm. Furthermore, by moving the optical pattern relative to the sample, we demonstrate patterning of closely spaced lines, whose spacing is as small as 119nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk.Anat. Entwichlungsmech9(1), 413–418 (1873).
    [CrossRef]
  2. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
    [CrossRef] [PubMed]
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
    [CrossRef] [PubMed]
  4. L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
    [CrossRef]
  5. T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
    [CrossRef]
  6. J. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett.76(6), 667 (2000).
    [CrossRef]
  7. S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
    [CrossRef] [PubMed]
  8. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
    [CrossRef] [PubMed]
  9. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1(8), 1221–1227 (2010).
    [CrossRef]
  10. L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  11. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
    [CrossRef] [PubMed]
  12. T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
    [CrossRef]
  13. T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
    [CrossRef]
  14. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
    [CrossRef] [PubMed]
  15. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett.33(24), 2916–2918 (2008).
    [CrossRef] [PubMed]
  16. H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
    [CrossRef]
  17. R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
    [CrossRef] [PubMed]
  18. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A23(9), 2290–2294 (2006).
    [CrossRef] [PubMed]
  19. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008).
    [CrossRef]
  20. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
    [CrossRef] [PubMed]

2012 (1)

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

2010 (2)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1(8), 1221–1227 (2010).
[CrossRef]

2009 (3)

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
[CrossRef] [PubMed]

2008 (2)

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008).
[CrossRef]

H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett.33(24), 2916–2918 (2008).
[CrossRef] [PubMed]

2007 (3)

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

2000 (1)

J. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett.76(6), 667 (2000).
[CrossRef]

1998 (1)

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
[CrossRef]

1997 (2)

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
[CrossRef]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

1873 (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk.Anat. Entwichlungsmech9(1), 413–418 (1873).
[CrossRef]

Abbé, E.

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk.Anat. Entwichlungsmech9(1), 413–418 (1873).
[CrossRef]

Andrew, T. L.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Berning, S.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Chou, S. Y.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008).
[CrossRef]

Dibaj, P.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Engelhardt, J.

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Engler, A.

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Fischer, J.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Fourkas, J. T.

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1(8), 1221–1227 (2010).
[CrossRef]

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gattass, R. R.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Goodberlet, J.

J. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett.76(6), 667 (2000).
[CrossRef]

Harke, B.

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
[CrossRef]

Hell, S. W.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Horikawa, Y.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

Hwang, H.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Inao, Y.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Irie, M.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
[CrossRef]

Ishikawa, A.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

Ito, T.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Kume, M.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
[CrossRef]

Kuroda, R.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Li, L. J.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Menon, R.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
[CrossRef] [PubMed]

H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett.33(24), 2916–2918 (2008).
[CrossRef] [PubMed]

H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
[CrossRef] [PubMed]

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A23(9), 2290–2294 (2006).
[CrossRef] [PubMed]

Mizutani, N.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
[CrossRef]

Ogino, M.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Pease, R. F.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008).
[CrossRef]

Pohl, D.

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
[CrossRef]

Rittweger, E.

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Smith, H. I.

Steffens, H.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Thomas, S. W.

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Tsai, H.-Y.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
[CrossRef] [PubMed]

H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett.33(24), 2916–2918 (2008).
[CrossRef] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
[CrossRef] [PubMed]

H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
[CrossRef]

Tsujioka, T.

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
[CrossRef]

Tsuujioka, T.

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Wallraff, G. M.

H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
[CrossRef]

Wegener, M.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Willig, K. I.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Yamaguchi, T.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Yamanaka, T.

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

Adv. Mater. (1)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laserwriting optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett.76(6), 667 (2000).
[CrossRef]

H.-Y. Tsai, G. M. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett.91(9), 094103 (2007).
[CrossRef]

Arch. Mikrosk. (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk.Anat. Entwichlungsmech9(1), 413–418 (1873).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Photopolym. Sci. Technol. (1)

T. Ito, M. Ogino, T. Yamanaka, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol.18(3), 435–441 (2005).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1(8), 1221–1227 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tsuujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys.36(Part 1, No. 1B), 526–529 (1997).
[CrossRef]

Nature (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev.4(3), 385–389 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett.98(4), 043905 (2007).
[CrossRef] [PubMed]

Proc. IEEE (1)

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE96(2), 248–270 (2008).
[CrossRef]

Science (6)

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep sub-wavelength dimensions to enable optical nanopatterning,” Science324(5929), 917–921 (2009).
[CrossRef] [PubMed]

S. W. Hell, A. Engler, E. Rittweger, B. Harke, J. Engelhardt, and S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-Photon photoinitiation and photoinhibition for sub-diffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Ultramicroscopy (1)

L. Novotny, B. Hecht, and D. Pohl, “Implications of high resolution to near-field optical microscopy,” Ultramicroscopy71(1-4), 341–344 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of absorbance-modulation-optical lithography (AMOL) based on photo-switching of the AML (a) using the conventional process (b)-(d) and using the new process (e)-(g).

Fig. 2
Fig. 2

(a) Illustration of the dual-wavelength Lloyd’s mirror interferometer, where the sample is illuminated by two standing waves. The period of the λ1 standing wave is approximately half that of the λ2 standing wave. (b) Atomic-force micrograph of lines in developed resist after a single exposure. (c) Linewidth as a function of exposure time for single exposures.

Fig. 3
Fig. 3

Schematic of multiple exposures for patterning dense features using AMOL. (a) Exposure with standing waves at λ2 and at λ1 results in isolated lines of exposed resist. The sample is then exposed to a uniform illumination at λ2, which converts the AML completely into the opaque form. The sample is stepped with respect to the optics and a second exposure with standing waves at λ2 and at λ1 is conducted. This results in dense lines as illustrated in (d) and after development in (e). (f) Atomic-force micrograph of dense lines whose approximately spacing is half that of the period of the λ2 standing wave.

Fig. 4
Fig. 4

(a) Schematic of a 2-step exposure, where the 2nd exposure is rotated with respect to the 1st. (b) and (c) Atomic-force micrographs of two samples that were exposed twice with a small rotation in between. Black-dashed circles show the corresponding regions.

Metrics