Abstract

An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).
  2. B. D. Steinberg, Microwave imaging with large antenna arrays: Radio Camera Principles and Techniques (Wiley-Interscience, 1983).
  3. S. Young and B. Schwarz, “LIDAR in the drivers seat,” Optics and Photonics12 (March) (2010).
  4. B. Schwarz, “Lidar: Mapping the world in 3D,” Nat. Photonics, 4(7), 429–430 (2010).
    [CrossRef]
  5. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics, 5(2), 83–90 (2011).
    [CrossRef]
  6. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).
  7. W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
    [CrossRef]
  8. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotechnology6(7), 423–7 (2011).
    [CrossRef] [PubMed]
  9. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008).
    [CrossRef]
  10. D. de Ceglia, M. A. Vincenti, and M. Scalora, “Wideband plasmonic beam steering in metal gratings,” Opt. Lett.37(2), 271 (2012).
    [CrossRef] [PubMed]
  11. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
    [CrossRef] [PubMed]
  12. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express18(13), 13655–13660 (2010).
    [CrossRef] [PubMed]
  13. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express19(22), 21595–21604 (2011).
    [CrossRef] [PubMed]
  14. J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
    [CrossRef]
  15. A. Yaacobi, E. Timurdogan, and M. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett.37, 1454–1456 (2012).
    [CrossRef] [PubMed]
  16. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).
  17. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
    [CrossRef]
  18. M. R. Watts, “Adiabatic microring resonators,” Opt. Lett.35, 3231–3233 (2010).
    [CrossRef] [PubMed]
  19. C. T. Derose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express19(25), 527–534 (2011).
    [CrossRef]

2013

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

2012

2011

C. T. Derose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express19(25), 527–534 (2011).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express19(22), 21595–21604 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics, 5(2), 83–90 (2011).
[CrossRef]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotechnology6(7), 423–7 (2011).
[CrossRef] [PubMed]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
[CrossRef] [PubMed]

2010

W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
[CrossRef]

S. Young and B. Schwarz, “LIDAR in the drivers seat,” Optics and Photonics12 (March) (2010).

B. Schwarz, “Lidar: Mapping the world in 3D,” Nat. Photonics, 4(7), 429–430 (2010).
[CrossRef]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express18(13), 13655–13660 (2010).
[CrossRef] [PubMed]

M. R. Watts, “Adiabatic microring resonators,” Opt. Lett.35, 3231–3233 (2010).
[CrossRef] [PubMed]

2009

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

2008

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008).
[CrossRef]

1999

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
[CrossRef]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Alù, A.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008).
[CrossRef]

Baets, R.

Barnard, E. S.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
[CrossRef] [PubMed]

Bonneau, R. J.

T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).

Bovington, J. T.

Bowers, J. E.

Brongersma, M. L.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
[CrossRef] [PubMed]

Cai, W.

W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
[CrossRef]

Coldren, L. A.

Coolbaugh, D.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Davids, P. S.

de Ceglia, D.

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
[CrossRef]

Derose, C. T.

Doylend, J. K.

Engheta, N.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008).
[CrossRef]

Fisher, M.

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Heck, M. J. R.

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).

Jun, C.

W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
[CrossRef]

Magdalena, S.-P.

T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics, 5(2), 83–90 (2011).
[CrossRef]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotechnology6(7), 423–7 (2011).
[CrossRef] [PubMed]

Pala, R. A.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
[CrossRef] [PubMed]

Peters, J. D.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
[CrossRef]

Rogier, H.

Sarkar, T. K.

T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).

Scalora, M.

Schnell, M.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

Schwarz, B.

S. Young and B. Schwarz, “LIDAR in the drivers seat,” Optics and Photonics12 (March) (2010).

B. Schwarz, “Lidar: Mapping the world in 3D,” Nat. Photonics, 4(7), 429–430 (2010).
[CrossRef]

Shah Hosseini, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

Starbuck, A. L.

Steinberg, B. D.

B. D. Steinberg, Microwave imaging with large antenna arrays: Radio Camera Principles and Techniques (Wiley-Interscience, 1983).

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

A. Yaacobi, E. Timurdogan, and M. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett.37, 1454–1456 (2012).
[CrossRef] [PubMed]

Trotter, D. C.

Van Acoleyen, K.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics, 5(2), 83–90 (2011).
[CrossRef]

Vincenti, M. A.

Watts, M.

Watts, M. R.

White, J.

W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
[CrossRef]

Wicks, M. C.

T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

A. Yaacobi, E. Timurdogan, and M. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett.37, 1454–1456 (2012).
[CrossRef] [PubMed]

Young, S.

S. Young and B. Schwarz, “LIDAR in the drivers seat,” Optics and Photonics12 (March) (2010).

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotechnology6(7), 423–7 (2011).
[CrossRef] [PubMed]

Zortman, W. A.

Appl. Phys. Lett.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338 (1999).
[CrossRef]

Nat. Photonics

B. Schwarz, “Lidar: Mapping the world in 3D,” Nat. Photonics, 4(7), 429–430 (2010).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics, 5(2), 83–90 (2011).
[CrossRef]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008).
[CrossRef]

Nature (London)

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature (London)3(April), 287–291 (2009).

W. Cai, C. Jun, and J. White, “Plasmonics for extreme light concentration and manipulation,” Nature (London)9(3), 193–204 (2010).
[CrossRef]

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, D. Coolbaugh, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature (London), 493, 195–199 (2013).
[CrossRef]

Nature Nanotechnology

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotechnology6(7), 423–7 (2011).
[CrossRef] [PubMed]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nature Nanotechnology6(9), 588–93 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optics and Photonics

S. Young and B. Schwarz, “LIDAR in the drivers seat,” Optics and Photonics12 (March) (2010).

Other

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).

T. K. Sarkar, M. C. Wicks, S.-P. Magdalena, and R. J. Bonneau, Smart Antennas (John Wiley & Sons, Inc., 2000).

B. D. Steinberg, Microwave imaging with large antenna arrays: Radio Camera Principles and Techniques (Wiley-Interscience, 1983).

Supplementary Material (2)

» Media 1: MP4 (1530 KB)     
» Media 2: MP4 (478 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the waveguide fed circular aperture antenna. (b) Schematic view of 1 × 8 linear antenna array with integrated thermo-optic phase shifter. The antenna are variable circular apertures in thin metallic sheets. R1 = 500 nm, R2 = 550 nm, R3 = 650 nm, and R = 750nm for the remaining apertures. (c) SEM image of chip-scale arrays after metal antenna patterning. (d) Real-space image of light collected from waveguide fed linear antenna array. Upper image under near-IR diode illumination. Lower image in the dark.

Fig. 2
Fig. 2

(a) Schematic of low loss thermo-optic waveguide phase shifter. (b) FDTD waveguide simulation of thermo-optic phase shifter superimposed on SEM image of fabricated device. (c) Mach-Zehnder characterization of the waveguide coupled thermo-optic phase shift showing 0 and π phase shift. (d) Measured phase shift as a function of applied electrical power. The phase shifter length for the 6μm and 9μm phase shifter is ∼ 10μm and ∼17μm, respectively.

Fig. 3
Fig. 3

(a) Schematic of far-field radiation pattern confocal imaging setup with real and Fourier space imaging capability. (b) Image of actual set up with fiber coupling to chip shown.

Fig. 4
Fig. 4

(a) FDTD simulation of far-field radiation pattern of 1× 8 aperture array with 9 μm pitch. (b) Measured angular sweep of central lobe versus applied electrical power for uniform array bias. (c)–(f) Measured surface normal radiation pattern and beam steering characteristics for increasing applied electrical power.

Fig. 5
Fig. 5

(a) FDTD simulation of far-field radiation pattern of 1× 8 aperture array with 6 μm pitch. (b) Measured angular sweep of central lobe versus applied electrical power for uniform array bias. (c)–(f) Measured surface normal radiation pattern and beam steering characteristics for increasing applied bias voltage.

Fig. 6
Fig. 6

(a) Measured surface normal radiation pattern and beam steering sweep data for 9 μm pitch aperture antenna array with comparison to the Smythe vector diffraction theory with estimated uniform phase profile at fixed wavelength ( Media 1). (b) Measured and theoretical surface normal radiation sweep data for the 6 μm pitch aperture antenna array ( Media 2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( x ) = 1 2 π × A d r exp ( i k | x x | ) | x x | ( e ^ z × E i ( x ) )
E ( x ) exp ( i k R ) R i λ A d r exp ( i k x ^ r ) ( x ^ × ( e ^ z × E i ( x ) ) = exp ( i k R ) R F ( x ^ ) ,
E i ( r ) = n τ n ( r r n ) A n exp ( i ϕ n ) ε ^ n
F ( x ^ ) = 1 λ n A n exp ( i k x ^ r n + i ϕ n ) ( x ^ × ( e ^ z × ε ^ n ) ) d u τ n ( u ) exp ( i k x ^ u )

Metrics