Abstract

Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a periodic waveguide consisting of a sequence of optical resonators can outperform conventional waveguides or single resonators and generate more than 1 Giga-pairs per second from a sub-millimeter-long room-temperature silicon device, pumped with only about 10 milliwatts of optical power. Furthermore, the spectral properties of such devices provide novel opportunities for chip-scale quantum light sources.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
    [CrossRef]
  2. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett.31, 3140–3142 (2006).
    [CrossRef] [PubMed]
  3. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
    [CrossRef] [PubMed]
  4. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express16, 20368–20373 (2008).
    [CrossRef] [PubMed]
  5. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009).
    [CrossRef] [PubMed]
  6. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
    [CrossRef]
  7. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
    [CrossRef]
  8. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
    [CrossRef]
  9. J. Osgood, R. M., N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009).
    [CrossRef]
  10. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
    [CrossRef] [PubMed]
  11. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
    [CrossRef] [PubMed]
  12. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000).
    [CrossRef]
  13. Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys.20, 1221–1233 (2010).
    [CrossRef]
  14. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
    [CrossRef]
  15. M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009).
    [CrossRef]
  16. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
    [CrossRef] [PubMed]
  17. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express19, 1470–1483 (2011).
    [CrossRef] [PubMed]
  18. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985).
    [CrossRef] [PubMed]
  19. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83, 061803 (2011).
    [CrossRef]
  20. J. K. S. Poon and A. Yariv, “Active coupled-resonator optical waveguides. i. gain enhancement and noise,” J. Opt. Soc. Am. B24, 2378–2388 (2007).
    [CrossRef]
  21. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
    [CrossRef]
  22. J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36, 2964–2966 (2011).
    [CrossRef] [PubMed]
  23. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
    [CrossRef] [PubMed]
  24. M. L. Cooper and S. Mookherjea, “Modeling of multiband transmission in long silicon coupled-resonator optical waveguides,” IEEE Photon. Technol. Lett.23, 872–874 (2011).
    [CrossRef]
  25. H.-C. Liu and A. Yariv, “Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (crows),” Opt. Express19, 17653–17668 (2011).
    [CrossRef] [PubMed]
  26. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
    [CrossRef]
  27. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett.37, 3807–3809 (2012).
    [PubMed]
  28. Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  29. S. Mookherjea and M. A. Schneider, “Avoiding bandwidth collapse in long chains of coupled optical microresonators,” Opt. Lett.36, 4557–4559 (2011).
    [CrossRef] [PubMed]
  30. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
    [CrossRef]
  31. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
    [CrossRef] [PubMed]
  32. R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
    [CrossRef]
  33. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett.35, 3030–3032 (2010).
    [CrossRef] [PubMed]

2012 (4)

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
[CrossRef]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett.37, 3807–3809 (2012).
[PubMed]

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
[CrossRef]

2011 (7)

2010 (3)

2009 (4)

2008 (3)

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express16, 20368–20373 (2008).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

2007 (3)

2006 (2)

2005 (1)

2004 (1)

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

2000 (1)

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000).
[CrossRef]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

1985 (1)

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985).
[CrossRef] [PubMed]

Agha, I.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Agrawal, G. P.

Aguinaldo, R.

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
[CrossRef]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[CrossRef] [PubMed]

Andreani, L. C.

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Assefa, S.

Azzini, S.

Baets, R. G.

Bajoni, D.

Benson, O.

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009).
[CrossRef]

Bogaerts, W.

Bortnik, B.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Chen, J.

Chen, X.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Chuu, C.-S.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83, 061803 (2011).
[CrossRef]

Clemmen, S.

Cohen, O.

Collett, M. J.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985).
[CrossRef] [PubMed]

Cooper, M. L.

Dadap, J. I.

Davanco, M.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Dulkeith, E.

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Emplit, P.

Fan, J.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Fetterman, H. R.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

Foster, M. A.

Fukuda, H.

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[CrossRef] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Gaeta, A. L.

Galli, M.

Garay-Palmett, K.

Gardiner, C. W.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985).
[CrossRef] [PubMed]

Gifford, D. K.

Grangier, P.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Grassani, D.

Green, W. M.

Green, W. M. J.

Gupta, G.

Harada, K.-i.

Harris, S. E.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83, 061803 (2011).
[CrossRef]

Helt, L. G.

Hsieh, I. W.

Hung, Y.-C.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Huy, K. P.

Itabashi, S.-i.

Jeronimo-Moreno, Y.

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys.20, 1221–1233 (2010).
[CrossRef]

Kim, S.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Koch, L.

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009).
[CrossRef]

Kumar, P.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
[CrossRef]

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Lee, K. F.

Levine, Z. H.

Lin, Q.

Lipson, M.

Liscidini, M.

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Liu, H.-C.

Liu, X.

Lu, Y. J.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000).
[CrossRef]

Lundeen, J. S.

M., R.

Massar, S.

McGuinness, H. J.

McKinstrie, C. J.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Migdall, A. L.

Mookherjea, S.

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
[CrossRef]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

M. L. Cooper and S. Mookherjea, “Modeling of multiband transmission in long silicon coupled-resonator optical waveguides,” IEEE Photon. Technol. Lett.23, 872–874 (2011).
[CrossRef]

S. Mookherjea and M. A. Schneider, “Avoiding bandwidth collapse in long chains of coupled optical microresonators,” Opt. Lett.36, 4557–4559 (2011).
[CrossRef] [PubMed]

J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36, 2964–2966 (2011).
[CrossRef] [PubMed]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett.35, 3030–3032 (2010).
[CrossRef] [PubMed]

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
[CrossRef]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

Ong, J. R.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36, 2964–2966 (2011).
[CrossRef] [PubMed]

Osgood, J.

Ou, Z. Y.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000).
[CrossRef]

Panoiu, N. C.

Poon, J. K. S.

Radic, S.

Rangel-Rojo, R.

Rarity, J.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

Raymer, M. G.

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Rodriguez-Benavides, S.

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys.20, 1221–1233 (2010).
[CrossRef]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

Russell, P.

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Schmidt, B. S.

Schneider, M. A.

Scholz, M.

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009).
[CrossRef]

Seo, B.-J.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Sharping, J. E.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

Shehata, A. B.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Shen, Y.

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
[CrossRef]

Sipe, J. E.

Sorel, M.

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett.37, 3807–3809 (2012).
[PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Srinivasan, K.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Steier, W. H.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Strain, M. J.

Takesue, H.

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
[CrossRef]

Tazawa, H.

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Tokura, Y.

Tosi, A.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Tsuchizawa, T.

Turner, A. C.

U’Ren, A. B.

Vlasov, Y. A.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

Walmsley, I. A.

Watanabe, T.

Xia, F.

Yamada, K.

Yang, Z.

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Yariv, A.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104 (2012).
[CrossRef]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter - a new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett.14, 983–985 (2002).
[CrossRef]

M. L. Cooper and S. Mookherjea, “Modeling of multiband transmission in long silicon coupled-resonator optical waveguides,” IEEE Photon. Technol. Lett.23, 872–874 (2011).
[CrossRef]

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Technol. Lett.24, 1242–1244 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys.20, 1221–1233 (2010).
[CrossRef]

Nat. Commun. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun.2, 296 (2011).
[CrossRef]

Nat. Photonics (2)

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-q coupled nanocavities,” Nat. Photonics2, 741–747 (2008).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Nature Photon. (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photon.2, 737–740 (2008).
[CrossRef]

Opt. Commun. (1)

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signalidler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun.282, 3518–3523 (2009).
[CrossRef]

Opt. Express (7)

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express19, 1470–1483 (2011).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
[CrossRef] [PubMed]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express16, 20368–20373 (2008).
[CrossRef] [PubMed]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express13, 7572–7582 (2005).
[CrossRef] [PubMed]

H.-C. Liu and A. Yariv, “Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (crows),” Opt. Express19, 17653–17668 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (3)

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A31, 3761–3774 (1985).
[CrossRef] [PubMed]

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83, 061803 (2011).
[CrossRef]

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A62, 033804 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007).
[CrossRef] [PubMed]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Other (1)

Y.-C. Hung, S. Kim, B. Bortnik, B.-J. Seo, H. Tazawa, H. R. Fetterman, and W. H. Steier, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A coupled resonator waveguide consisting of N directly-coupled microring resonators. The waveguide eigenmode is a Bloch excitation, i.e., a collective oscillation of all N resonators, with a fixed relationship between adjacent resonators [14]. The direction of light circulation in each resonator is as indicated for the specified input. In the notation used in this paper, the field operator of successive resonators are a1, a2, a3, ..., the resonance radial frequencies are Ω1, Ω2, Ω3, ..., the inter-ring coupling coefficients are labeled κ2, κ3, κ4, ..., and the input/output external coupling coefficients are labeled by their rates 1 τ e 1 and 1 τ e 2 (the latter is not shown, at the output side of the chip). The resonator loss is indicated by the damping rate 1 τ l.

Fig. 2
Fig. 2

(a) Calculated photon pair flux F using pair generation equations, Eq. (8). The white trend-line follows the optimum number of resonators for a given slowing factor. (b) Corresponding values of γeffP̄L for each S and N, showing the low multiphoton generation probability along the white line. (c) Calculated photon pair flux F using coupled mode equations, Eq. (5a). The top region of the contour plot represents a single resonator, while the far left approaches that of a conventional silicon nanowire waveguide. For S = 50, the optimum number of resonators is Nopt = 25 for which F = 4 MHz/mW2.

Fig. 3
Fig. 3

Joint spectral intensity (JSI) plots for various coupling coefficient configurations, assuming that the coupling coefficients between adjacent resonators, shown in Fig. 1, can be individually altered. (a) Unapodized (b) Apodized (c),(d) Chosen from a sample of Monte Carlo simulations with random coupling coefficients. (e) JSI for coupling coefficients chosen so as to realize a Butterworth filter response and (f) Bessel filter response in the linear transmission regime.

Fig. 4
Fig. 4

(a) Spectra of the transmission bands of a coupled resonator waveguide consisting of five microrings. (b) Spectrum of the two photon state when a cw pump is placed at the resonance Ωp. (vertical axes are in logarithmic scale for both (a) and (b)) (c),(d) JSI of the transmission bands adjacent to the pump as well as two bands away.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

H = m l = s , i h ¯ Ω m a l , m a l , m + h ¯ κ l , m a l , m a l , m 1 + h ¯ κ l , m + 1 a l , m a l , m + 1 + h ¯ χ m a s , m a i , m
[ 1 τ s i ( ω s Ω s ) ] a s ( ω s ) = i χ ( ω s + ω i ) a i ( ω i ) d ω i i μ a s , in
[ 1 τ i + i ( ω i Ω i ) ] a i ( ω i ) = + i χ ( ω s + ω i ) a s ( ω s ) d ω s + i μ a i , i n
a out , s ( ω s ) = μ 2 [ A ( ω s , ω i ) a in , s ( ω s ) + B ( ω s , ω i ) a in , i ( ω i ) ]
a out , i ( ω i ) = μ 2 [ C ( ω s , ω i ) a in , s ( ω s ) + D ( ω s , ω i ) a in , i ( ω i ) ]
σ ( ω s , ω i ) = a out , s a out , s = μ 4 | χ ( ω s + ω i ) | 2 | 1 τ s i ( ω s Ω s ) | 2 | 1 τ i + i ( ω i Ω i ) | 2
[ a s , 1 a s , 2 a i , 1 a i , 2 ] 2 N × 1 = i μ T [ a s , in 0 a i , in 0 ] 2 N × 1
T = [ M s C C M i ] 2 N × 2 N 1
M s = [ i ( ω s Ω s , 1 ) + 1 τ l + 1 τ e 1 i κ s , 2 0 0 i κ s , 2 i ( ω s Ω s , 2 ) + 1 τ l . 0 0 . . . . 0 . i ( ω s Ω s , N ) + 1 τ l + 1 τ e 2 ] N × N
C = [ i χ 1 0 0 0 i χ 2 0 0 0 . . i χ N ] N × N
a out , s ( ω s ) = μ 1 μ 2 [ T N , 1 ( ω s , ω i ) a in , s ( ω s ) + T N , N + 1 ( ω s , ω i ) a in , i ( ω i ) ]
a out , i ( ω i ) = μ 1 μ 2 [ T 2 N , 1 ( ω s , ω i ) a in , s ( ω s ) + T 2 N , N + 1 ( ω s , ω i ) a in , i ( ω i ) ]
| ψ = | 0 s | 0 i + g d ω s d ω i S s ( ω s ) S i ( ω i ) S p ( ω s , ω i ) × f ( ω s , ω i ) a ( ω s ) a ( ω i ) | 0 s | 0 i
F = Δ ν ( γ eff P L eff ) 2 exp ( α L )
Δ ν 1 N 2 FSR π sin 1 | κ | .
P i , S P = ( γ 2 π R ) 2 ( Q v g ω p π R ) 3 h ¯ ω p v g 4 π R P p 2 ,
Q = π a r t τ 1 a r t τ n g L λ
Q = 2 π n g λ α
Q = 2 π n g λ | κ | 2 / L .
γ eff 1 L d Φ CROW d P i n = d Φ CROW d ϕ d ϕ d P ring d P ring d P in = S S + 1 2 γ S S 2 γ
Δ ν = 2 FSR π sin 1 | κ | .

Metrics