Abstract

We demonstrate that amplified spontaneous emission (ASE) and pre-pulses for high power lasers can be suppressed by propagating the pulse through a boron nitride plasma microlens. The microlens is created by ablating a boron-nitride (BN) disk with a central hole using an Nd:YAG laser . The plasma lens produced in the ablation process exhibits different focal lengths for the high intensity main pulse and low intensity pre-pulse that increases the main pulse/pre-pulse contrast ratio by one order of magnitude while maintaining high transmittance of the pulse energy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett.36(6), 781–783 (2011).
    [CrossRef] [PubMed]
  2. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett.30(8), 920–922 (2005).
    [CrossRef] [PubMed]
  3. S. Backus, H. C. Kapteyn, M. M. Murnane, D. M. Gold, H. Nathel, and W. White, “Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target,” Opt. Lett.18(2), 134–136 (1993).
    [CrossRef] [PubMed]
  4. S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
    [CrossRef] [PubMed]
  5. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
    [CrossRef]
  6. Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
    [CrossRef]
  7. R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
    [CrossRef]
  8. Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulses,” J. Appl. Phys.90(12), 6447–6450 (2001).
    [CrossRef]
  9. P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
    [CrossRef] [PubMed]
  10. J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
    [CrossRef]
  11. T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
    [CrossRef]
  12. R. H. Huddlestone and S. L. Leonard, Plasma Diagnostic Techniques (Academic Press, 1965).
  13. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

2011

2009

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

2007

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

2005

2004

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

2002

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
[CrossRef] [PubMed]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

2001

Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulses,” J. Appl. Phys.90(12), 6447–6450 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

1993

Albert, O.

Augé-Rochereau, F.

Backus, S.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Bulanov, S.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Burgy, F.

Chambaret, J. P.

Chériaux, G.

Chvykov, V.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Eisenmann, S.

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

Etchepare, J.

Ferber, Y.

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

Gold, D. M.

Gordon, D. F.

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

Hafizi, B.

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
[CrossRef] [PubMed]

Hamoniaux, G.

Hirayama, Y.

Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulses,” J. Appl. Phys.90(12), 6447–6450 (2001).
[CrossRef]

Huang, Y.

Hubbard, R. F.

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Jullien, A.

Kaganovich, D.

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Kalintchenko, G.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Kapetanakos, C. A.

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

Kapteyn, H. C.

Katzir, Y.

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

Kodama, R.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Krushelnick, K.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Leng, Y.

Li, D.

Li, R.

Litzenberg, D. W.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Maksimchuk, A.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Matsuoka, T.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Minkovski, N.

Murnane, M. M.

Nathel, H.

Obara, M.

Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulses,” J. Appl. Phys.90(12), 6447–6450 (2001).
[CrossRef]

Palchan, T.

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

Peñano, J. R.

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
[CrossRef] [PubMed]

Reed, S. A.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Rousseau, J. P.

Rousseau, P.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Saltiel, S. M.

Sasorov, P.

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Sprangle, P.

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
[CrossRef] [PubMed]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Tampo, M.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Ting, A.

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Ting, C.

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

White, W.

Xu, Y.

Xu, Z.

Yanovsky, V.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Zhang, C.

Zigler, A.

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Appl. Phys. Lett.

S. A. Reed, T. Matsuoka, S. Bulanov, M. Tampo, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, R. Kodama, D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk, “Relativistic plasma shutter for ultraintense laser pulses,” Appl. Phys. Lett.94(20), 201117 (2009).
[CrossRef] [PubMed]

Y. Katzir, S. Eisenmann, Y. Ferber, A. Zigler, and R. F. Hubbard, “A plasma microlens for ultrashort high power lasers,” Appl. Phys. Lett.95(3), 031101 (2009).
[CrossRef]

T. Palchan, D. Kaganovich, P. Sasorov, P. Sprangle, C. Ting, and A. Zigler, “Electron density in low density capillary plasma channel,” Appl. Phys. Lett.90(6), 061501 (2007).
[CrossRef]

J. Appl. Phys.

Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulses,” J. Appl. Phys.90(12), 6447–6450 (2001).
[CrossRef]

Meas. Sci. Technol.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Opt. Lett.

Phys. Plasmas

J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas11(5), 2865–2874 (2004).
[CrossRef]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas9(4), 1431–1442 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046418 (2002).
[CrossRef] [PubMed]

Other

R. H. Huddlestone and S. L. Leonard, Plasma Diagnostic Techniques (Academic Press, 1965).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of differences in propagation between the prepulse and main pulse. The prepulse is strongly focused by the plasma lens and then disperses while leaving the plasma distribution unaffected. As the main pulse arrives it further ionizes the plasma and neutral gas, thus destroying the plasma lens and propagating mostly unaffected.

Fig. 2
Fig. 2

(a) Simulated intensity contours as a function of time and transverse coordinate at z=0. (b) Transverse profile of electron density at t=0.3psec (lighter solid curve) just before the arrival of the laser pulses, t=0.1psec (dashed curve) at the leading edge of the main pulse, and t=0 (short-dashed curve) at the peak intensity of the main pulse. The transverse intensity profile of the main pulse is denoted by the thicker solid curve.

Fig. 3
Fig. 3

Simulated intensity contours as a function of time and transverse coordinate at (a) z=0 , (b) z=0.7mm , and (c) z=5mm for a laser pulse and pre-pulse passing through a plasma lens. (d) On-axis temporal profile of intensity at z=0 (dashed curve) and z=5mm showing the reduction in pre-pulse amplitude.

Fig. 4
Fig. 4

Experimental setup. Two photodiodes were used to measure the contrast ratio: photodiode 1 was set before the plasma lens, measuring a leak from an input mirror; photodiode 2 was placed after the plasma lens measuring a reflection off a beam splitter. Each photodiode output was divided into two channels with two different scales, depicting the prepulse and main pulse intensities, thus determining their ratio.

Fig. 5
Fig. 5

Measured plasma density before arrival of the main pulse (red) shows the hollow profile corresponding to different optical path lengths as a function of distance from capillary center causing focusing at low intensities. Plasma density after arrival of the main pulse (blue) showing a smoothing the hollow profile.

Fig. 6
Fig. 6

Prepulse suppression. Blue line shows contrast ratio in the absence of the plasma lens. Green line shows contrast ratio with plasma lens. The contrast ratio increases an order of magnitude when propagating through the lens.

Fig. 7
Fig. 7

(a)Image of high intensity laser pulse without plasma lens (PL). (b) high intensity pulse with PL and ND filter of OD = 1.5 added. c)low intensity without PL. d) low intensity with PL.

Metrics