Abstract

Direct monitoring of singlet oxygen (1O2) luminescence is a particularly challenging infrared photodetection problem. 1O2, an excited state of the oxygen molecule, is a crucial intermediate in many biological processes. We employ a low noise superconducting nanowire single-photon detector to record 1O2 luminescence at 1270 nm wavelength from a model photosensitizer (Rose Bengal) in solution. Narrow band spectral filtering and chemical quenching is used to verify the 1O2 signal, and lifetime evolution with the addition of protein is studied. Furthermore, we demonstrate the detection of 1O2 luminescence through a single optical fiber, a marked advance for dose monitoring in clinical treatments such as photodynamic therapy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann, eds., in Handbook of Biophotonics (Wiley-VCH, 2012)
  2. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  3. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
    [CrossRef] [PubMed]
  4. R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer5(10), 796–806 (2005).
    [CrossRef] [PubMed]
  5. H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
    [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  7. http://jp.hamamatsu.com/products/sensor-etd/pd002/index_en.html
  8. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).
  9. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
    [CrossRef]
  10. C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003).
    [CrossRef] [PubMed]
  11. P. R. Ogilby, “Singlet oxygen: there is indeed something new under the sun,” Chem. Soc. Rev.39(8), 3181–3209 (2010).
    [CrossRef] [PubMed]
  12. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
    [CrossRef] [PubMed]
  13. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
    [CrossRef] [PubMed]
  14. U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000).
    [CrossRef] [PubMed]
  15. M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
    [CrossRef] [PubMed]
  16. M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
    [PubMed]
  17. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
    [CrossRef] [PubMed]
  18. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
    [CrossRef] [PubMed]
  19. A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
    [CrossRef] [PubMed]
  20. M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
    [CrossRef]
  21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
    [CrossRef]
  22. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
    [CrossRef] [PubMed]
  23. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
    [CrossRef]
  24. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
    [CrossRef]
  25. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
    [CrossRef]
  26. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
    [CrossRef]
  27. M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997).
    [CrossRef]
  28. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, T. Gerrets, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774.
  29. V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
    [CrossRef]
  30. J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
    [CrossRef] [PubMed]
  31. S. G. Davis and S. Lee, “Singlet oxygen production and dosimetry for photodynamic therapy,” U.S. Patent 0209125A1 (Aug. 16, 2012).
  32. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
    [CrossRef] [PubMed]
  33. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010).
    [CrossRef] [PubMed]
  34. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett.37(14), 2982–2984 (2012).
    [CrossRef] [PubMed]

2012 (3)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett.37(14), 2982–2984 (2012).
[CrossRef] [PubMed]

2011 (2)

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

2010 (4)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

P. R. Ogilby, “Singlet oxygen: there is indeed something new under the sun,” Chem. Soc. Rev.39(8), 3181–3209 (2010).
[CrossRef] [PubMed]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010).
[CrossRef] [PubMed]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

2009 (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

2008 (1)

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

2006 (3)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

2005 (3)

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer5(10), 796–806 (2005).
[CrossRef] [PubMed]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

2003 (4)

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003).
[CrossRef] [PubMed]

2002 (2)

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
[CrossRef] [PubMed]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

2000 (1)

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000).
[CrossRef] [PubMed]

1997 (1)

M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997).
[CrossRef]

1992 (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Acerbi, F.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Arridge, S. R.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Baek, B.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010).
[CrossRef] [PubMed]

Berggren, K. K.

Bermudez Urena, E.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Berndt, K. W.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Brown, E. A.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Brown, S. B.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Buller, G. S.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

Cova, S.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Dauler, E. A.

Delpy, D. T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Dolmans, D. E. J. G. J.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Doronbos, S. N.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Entwistle, M.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Fukumura, D.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

Gibson, A.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Giles, A.

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Gruber, S. S.

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

Hamilton, S. A.

Harrington, S.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

Hasan, T.

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hillman, E. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hirano, T.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Hoffman, R. M.

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer5(10), 796–806 (2005).
[CrossRef] [PubMed]

Inenaga, C.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Itzler, M.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Jain, R. K.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Jarvi, M. T.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Jiang, X.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Jiménez-Banzo, A.

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

Johnson, M.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Kapusta, P.

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

Karnchanaphanurach, P.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Kerman, A. J.

Klapwijk, T. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Kohno, E.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Koide, M.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Li, S.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Lita, A. E.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

Louie, T. M.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Luo, G.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Makise, K.

Marsili, F.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Miki, S.

Miller, A. J.

Mirin, R. P.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

Molnar, R. J.

Nam, S. W.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express18(2), 1430–1437 (2010).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

Namba, H.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Niedre, M.

M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
[CrossRef] [PubMed]

Niedre, M. J.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

Nonell, S.

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Ogilby, P. R.

P. R. Ogilby, “Singlet oxygen: there is indeed something new under the sun,” Chem. Soc. Rev.39(8), 3181–3209 (2010).
[CrossRef] [PubMed]

Okada, M.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Patterson, M. S.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
[CrossRef] [PubMed]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Ragàs, X.

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Schmidt, R.

C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000).
[CrossRef] [PubMed]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

Schweitzer, C.

C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003).
[CrossRef] [PubMed]

Secord, A. J.

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Shim, M. G.

M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997).
[CrossRef]

Slomkowski, K.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Stevens, M. J.

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Terai, H.

Terakawa, S.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Tokuyama, T.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Tosi, A.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

Verma, V. B.

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Walker, I.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Wang, Z.

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Wilson, B. C.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
[CrossRef] [PubMed]

M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997).
[CrossRef]

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Xie, X. S.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Xun, L.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Yamamoto, J.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Yamamoto, S.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Yamashita, T.

Yang, H.

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Yokota, N.

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Zappa, F.

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Zwiller, V.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89(3), 031109 (2006).
[CrossRef]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. N. Doronbos, E. Bermudez Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010).
[CrossRef]

V. B. Verma, F. Marsili, S. Harrington, A. E. Lita, R. P. Mirin, and S. W. Nam, “A three dimensional, polarization-insensitive superconducting nanowire avalanche photodetector,” Appl. Phys. Lett.101(25), 251114 (2012).
[CrossRef]

Cancer Res. (1)

M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res.63(22), 7986–7994 (2003).
[PubMed]

Chem. Rev. (1)

C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev.103(5), 1685–1758 (2003).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

P. R. Ogilby, “Singlet oxygen: there is indeed something new under the sun,” Chem. Soc. Rev.39(8), 3181–3209 (2010).
[CrossRef] [PubMed]

Clin. Cancer Res. (1)

J. Yamamoto, S. Yamamoto, T. Hirano, S. Li, M. Koide, E. Kohno, M. Okada, C. Inenaga, T. Tokuyama, N. Yokota, S. Terakawa, and H. Namba, “Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma,” Clin. Cancer Res.12(23), 7132–7139 (2006).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

J. Raman Spectrosc. (1)

M. G. Shim and B. C. Wilson, “Development of an in vivo Raman spectroscopy system for diagnostic applications,” J. Raman Spectrosc.28(2-3), 131–142 (1997).
[CrossRef]

Lancet Oncol. (1)

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010).
[CrossRef]

Nat. Photonics (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

Nat. Rev. Cancer (2)

R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer5(10), 796–806 (2005).
[CrossRef] [PubMed]

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. (4)

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol.87(1), 223–234 (2011).
[CrossRef] [PubMed]

M. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol.75(4), 382–391 (2002).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol.81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet Oxygen Luminescence Dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol.82(5), 1198–1210 (2006).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

A. Jiménez-Banzo, X. Ragàs, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci.7(9), 1003–1010 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Science (1)

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, “Protein conformational dynamics probed by single-molecule electron transfer,” Science302(5643), 262–266 (2003).
[CrossRef] [PubMed]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconductor nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012).
[CrossRef]

Surv. Ophthalmol. (1)

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol.45(3), 195–214 (2000).
[CrossRef] [PubMed]

Other (5)

W. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann, eds., in Handbook of Biophotonics (Wiley-VCH, 2012)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

http://jp.hamamatsu.com/products/sensor-etd/pd002/index_en.html

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, T. Gerrets, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774.

S. G. Davis and S. Lee, “Singlet oxygen production and dosimetry for photodynamic therapy,” U.S. Patent 0209125A1 (Aug. 16, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Jablonski (energy level) diagram for singlet oxygen (1O2) generation in photodynamic therapy (PDT). 1O2, the primary cytotoxic species in most PDT applications, is generated by energy transfer to triplet ground-state oxygen from the excited triplet state of a photosensitizer molecule: the latter is generated from the excited singlet state that results from light absorption by the ground-state photosensitizer. 1O2 can return to the ground state (3O2) with the emission of an infrared photon at around 1270_nm wavelength. However, due to the very high reaction rates of 1O2 with biomolecules, this is an extremely rare event (~1 in 108) in cells, and the lifetime is very short (<<1 µs). (b) Set-up for free space-coupled singlet oxygen luminescence detection. Acronyms used: Superconducting Nanowire Single Photon Detector (SNSPD); Long Pass (LP); Band Pass (BP); Neutral Density (ND); Time Correlated Single Photon Counting (TCSPC). (c) Representative TCSPC histograms from Rose Bengal solution (250 μg/ml, 0.257 μM) with bandpass filters (20 nm spectral width) centered at 1210, 1240, 1270, 1310 and 1340 nm [10 min acquisition time, 0.1024 μs bin size]. Short-lived fluorescence (occurring within the first μs) is present at all wavelengths studied; the key signature of 1O2 is the onset and decay observed only at 1270 nm.

Fig. 2
Fig. 2

(a) Total counts within 3 min histograms (after fluorescence peak and background subtraction), using 1270 nm band pass filtering, for increasing RB concentration. The reduction at the highest concentration is likely due to much higher attenuation of the excitation light by the increased opacity of the photosensitizer sample. (b) TCSPC histograms recorded from Rose Bengal (0.257_μM) with the 1270 nm bandpass filter, before and after addition of 2 M sodium azide (3 min acquisition time, 0.1024_μs bin size). The first 1.3 μs corresponding to the initial fluorescence peak is ignored. The red curve is the least-squares fit to Eq. (1), for lifetimes τT = 2.3 ± 0.3 μs and τD = 3.0 ± 0.3 μs, taking into account a constant offset due to background counts (C = 39 counts per bin).

Fig. 3
Fig. 3

The effect of increasing BSA concentration on the Rose Bengal histograms (1270 nm filter, 60 min acquisition, 0.256 μs bin size). Inset: fitted lifetimes as a function of BSA concentration. The error bars represent the standard errors in the fits.

Fig. 4
Fig. 4

Fiber-based delivery and collection for singlet oxygen luminescence detection. (a) Schematic of the experimental set up. (b) Luminescence time histograms in RB (97.367 nM) for the different bandpass filters (30 min acquisition time, 0.128 μs bin size), (c) Quenching with sodium azide [60 min acquisition time, 0.512 μs bin size].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ O 1 2 ]( t )=Nσ[ S 0 ] Φ D τ D τ T τ D [ exp( t τ T )exp( t τ D ) ],

Metrics