Abstract

We present a numerical simulation of parametric gain properties in GaInP PhC dispersion engineered waveguides in which the group velocity dispersion crosses zero twice and where the pump and the signal are 100ps pulses. The simulations use the M-SSFT algorithm which incorporates dispersive nonlinear coefficients and losses. We concentrate on narrow band parametric gain which occurs for pump wavelengths in the normal group velocity dispersion regime. The effects of structural details, of pump wavelength and of losses are carefully analyzed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Li, T. P. O’Faolain, L. Gomez-Iglesias, A. Krauss, and T. F, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008).
    [CrossRef] [PubMed]
  2. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012).
    [CrossRef] [PubMed]
  3. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001).
    [CrossRef]
  4. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys.40, 2666 (2007).
    [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
    [CrossRef]
  6. M. Santagiustina, C. G. Someda, G. Vadala, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010).
    [CrossRef] [PubMed]
  7. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011).
    [CrossRef] [PubMed]
  8. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett.37, 3996–3998 (2012).
    [CrossRef] [PubMed]
  9. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
    [CrossRef] [PubMed]
  10. I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011).
    [CrossRef] [PubMed]
  11. C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.
  12. S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012).
    [CrossRef]
  13. I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
    [CrossRef]
  14. S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012).
    [CrossRef] [PubMed]
  15. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
    [CrossRef] [PubMed]
  16. M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
    [CrossRef]
  17. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
    [CrossRef] [PubMed]
  18. A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.
  19. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
    [CrossRef] [PubMed]
  20. A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol.26, 2260–2268 (2008).
    [CrossRef]
  21. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).
  22. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
    [CrossRef] [PubMed]
  23. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35, 3198–3200 (2010).
    [CrossRef] [PubMed]
  24. O. Sinkin, R. Holzlohner, J. Zweck, and C. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol.21, 61–68 (2003).
    [CrossRef]
  25. A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol.30, 2988–2994 (2012).
    [CrossRef]
  26. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
    [CrossRef] [PubMed]
  27. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
    [CrossRef] [PubMed]
  28. G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 10, 389–444.

2012 (5)

2011 (3)

2010 (3)

2009 (2)

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
[CrossRef] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
[CrossRef]

2003 (2)

2001 (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 10, 389–444.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001).
[CrossRef]

Blit, R.

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
[CrossRef] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Cestier, I.

Clark, A.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Coen, S.

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Collins, M.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Colman, P.

Combrié, S.

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012).
[CrossRef] [PubMed]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012).
[CrossRef] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett.37, 3996–3998 (2012).
[CrossRef] [PubMed]

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012).
[CrossRef]

I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011).
[CrossRef] [PubMed]

M. Santagiustina, C. G. Someda, G. Vadala, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010).
[CrossRef] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Dahan, D.

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
[CrossRef] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

De Rossi, A.

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012).
[CrossRef]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012).
[CrossRef] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Eckhouse, V.

Eggleton, B.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Eggleton, B. J.

Eisenstein, G.

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012).
[CrossRef] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett.37, 3996–3998 (2012).
[CrossRef] [PubMed]

A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol.30, 2988–2994 (2012).
[CrossRef]

I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011).
[CrossRef] [PubMed]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35, 3198–3200 (2010).
[CrossRef] [PubMed]

A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol.26, 2260–2268 (2008).
[CrossRef]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
[CrossRef] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

F, T.

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Gershikov, A.

Gomez-Iglesias, L.

Grillet, C.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Harvey, J. D.

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Holzlohner, R.

Hseih, A. S. Y.

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Hughes, S.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Hugonin, J. P.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
[CrossRef] [PubMed]

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Kazovsky, L.

M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
[CrossRef]

Knight, J.

Krauss, A.

Krauss, T.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Krauss, T. F.

Lalanne, P.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
[CrossRef] [PubMed]

Lefevre, Y.

I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
[CrossRef]

Lehoucq, G.

Leonhardt, R.

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Li, J.

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Li, J. W.

Marhic, M.

M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
[CrossRef]

Marie, V.

Marshall, G.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Mazoyer, S.

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
[CrossRef] [PubMed]

Menyuk, C.

Monat, C.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Moss, D.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Moss, D. J.

Murdoch, S. G.

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
[CrossRef] [PubMed]

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

O’Faolain, L.

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

O’Faolain, T. P.

OFaolain, L.

Patterson, M.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Pelusi, M.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Rey, I. H.

I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
[CrossRef]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011).
[CrossRef] [PubMed]

Rossi, A. D.

Roy, S.

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012).
[CrossRef] [PubMed]

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012).
[CrossRef]

Russell, P. S.

Santagiustina, M.

Schulz, S. A.

I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
[CrossRef]

Shumakher, E.

Sinkin, O.

Sipe, J. E.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001).
[CrossRef]

Someda, C. G.

Steel, M.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Tran, N.-V.-Q.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Vadala, G.

Vanholsbeeck, F.

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Vermeulen, N.

I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
[CrossRef]

Wadsworth, W. J.

White, T. P.

Willinger, A.

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett.37, 2919–2921 (2012).
[CrossRef] [PubMed]

A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol.30, 2988–2994 (2012).
[CrossRef]

I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011).
[CrossRef] [PubMed]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35, 3198–3200 (2010).
[CrossRef] [PubMed]

A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol.26, 2260–2268 (2008).
[CrossRef]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
[CrossRef] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Wong, G. K. L.

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
[CrossRef] [PubMed]

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

Wong, K.-Y.

M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
[CrossRef]

Xavier, S.

Xiong, C.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

Zweck, J.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10, 1133–1141 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. D: Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys.40, 2666 (2007).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

Opt. Express (9)

M. Santagiustina, C. G. Someda, G. Vadala, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010).
[CrossRef] [PubMed]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011).
[CrossRef] [PubMed]

J. W. Li, T. P. O’Faolain, L. Gomez-Iglesias, A. Krauss, and T. F, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008).
[CrossRef] [PubMed]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20, 13108–13114 (2012).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
[CrossRef] [PubMed]

I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. D. Rossi, “Time domain switching / demultiplexing using four wave mixing in gainp photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
[CrossRef] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15, 2947–2952 (2007).
[CrossRef] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express14, 8540–8545 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Photonics J. (1)

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics J.4, 224–233 (2012).
[CrossRef]

Phys. Rev. B (1)

I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, and T. F. Krauss, “Scaling of raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B84, 035306 (2011).
[CrossRef]

Phys. Rev. E (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett.103, 063903 (2009).
[CrossRef] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102, 253903 (2009).
[CrossRef] [PubMed]

Other (4)

G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 10, 389–444.

C. Monat, B. Corcoran, C. Xiong, M. Collins, M. Pelusi, A. Clark, C. Grillet, J. Li, L. O’Faolain, T. Krauss, G. Marshall, M. Steel, D. Moss, and B. Eggleton, “Slow-light enhanced nonlinearities in photonic crystals and their application to optical signal processing and quantum integrated optics,” in Proceedings of the 17th Opto-Electronics and Communications Conference (Busan, Korea, 2012) 885–886.

A. S. Y. Hseih, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of kerr and raman nonlinearities on single-pump optical parametric amplifiers,” in Proceedings of the 33rd European Conference and Ehxibition of Optical Communication (Berlin, Germany, 2007) 1–2.

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Top view schematics of the PhC waveguide structure. The asymmetric shift T sets the position of the holes of two innermost rows. (b) Calculated band diagrams for the corresponding structures with the appropriate T a values in the legend.

Fig. 2
Fig. 2

Spectra of (a) Group index, (b) dispersion parameter, (c) losses and (d) SPM nonlinear parameter, all for different T a values.

Fig. 3
Fig. 3

Phase matching maps of the parametric gain coefficient with (a) absolute axis of the pump and signal wavelength and (b) normalized detunings (where ΔZDW = λ̃2λ̃1), for a pump power of 750mW. The color scale indicates the different T a values.

Fig. 4
Fig. 4

Parametric gain of a pulsed signal with pulsed pump in a PhC waveguide with T a = 0.1. (a) The input (solid) and output (dash) pulses belong to a signal at λs = 1538.57nm, with half-power width of 88.23ps and 45.74ps respectively. The pulsed pump is positioned at λp = 1556.05nm. (b) Gain spectra for different signal and pump wavelength.

Fig. 5
Fig. 5

Dependence on pump wavelength of (a) peak gain of NB-FWM and (b) the signal wavelength at which the peak gain is obtained. Different T a values are shown, calculated in the presence of losses. Solid (dash) curves describe the peak gain and peak wavelength for negative (positive) detuning of the signal relative to the pump.

Fig. 6
Fig. 6

Maps of (a) peak gain in NB-FWM versus peak signal wavelength and (b) pulse compression ratio versus peak signal wavelength in the presence of losses, for different T a values.

Fig. 7
Fig. 7

Spectra of the FWM nonlinear parameter γF as a function of pump wavelength (a) for an absolute wavelength scale and (b) for normalized detuning relative to the short ZDW (Δs). The different curves are given for different T a values. The pump wavelength changes in the normal dispersion region and the signal wavelength is set to the mid-point detuning between the gain-region boundaries.

Fig. 8
Fig. 8

Net gain spectra as a function of normalized signal-pump detuning Δs, for different loss values. The loss was increased by fixed factors f where the curve for f = 0 describes the lowest loss. f = 0 is actually the case of measured losses spectrum. The spectra are calculated for a pump wavelength λp = 1546.37nm and T a = 0.1. The net gain is the ratio between the output and input signal peak power divided by the linear loss factor.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 2 = ( γ F P p ) 2 ( Δ κ 2 ) 2 ,
Δ κ = Δ k + 2 ( γ p s + γ p i γ p ) P p
Δ p = λ p λ ˜ 1 λ ˜ 2 λ ˜ 1 , Δ s = λ s λ p λ ˜ 2 λ ˜ 1 ,
G = 1 + ( γ F P p ) 2 g sinh ( g L ) .

Metrics