Abstract

We demonstrate successful integration of aperiodic arrays of metal nanoparticles with microfluidics technology for optical sensing using the spectral-colorimetric responses of nanostructured arrays to refractive index variations. Different aperiodic arrays of gold (Au) nanoparticles with varying interparticle separations and Fourier spectral properties are fabricated using Electron Beam Lithography (EBL) and integrated with polydimethylsiloxane (PDMS) microfluidics structures by soft-lithographic micro-imprint techniques. The spectral shifts of scattering spectra and the distinctive modifications of structural color patterns induced by refractive index variations were simultaneously measured inside microfluidic flow cells by dark-field spectroscopy and image correlation analysis in the visible spectral range. The integration of engineered aperiodic arrays of Au nanoparticles with microfluidics devices provides a novel sensing platform with multiplexed spatial-spectral responses for opto-fluidics applications and lab-on-a-chip optical biosensing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
    [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
    [CrossRef] [PubMed]
  3. J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
    [CrossRef] [PubMed]
  4. A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
    [CrossRef] [PubMed]
  5. J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
    [CrossRef] [PubMed]
  6. S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
    [CrossRef] [PubMed]
  7. J. Y. Zhang, Q. Cao, M. Mahalanabis, and C. M. Klapperich, “Integrated microfluidic sample preparation for chip based molecular diagnostics.,” in Microfluidic Applications for Human Health, U. Demirci, A. Khademhosseini, R. Langer, and J. Blander, eds. (World Scientific Publishing Co., Hackensack, NJ, USA, 2012).
  8. H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
    [CrossRef]
  9. L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
    [CrossRef]
  10. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
    [CrossRef]
  11. X. Fan, Advanced photonic structure for biological and chemical detection (Springer, 2009).
  12. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005).
    [CrossRef] [PubMed]
  13. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  14. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
    [CrossRef]
  15. J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
    [CrossRef] [PubMed]
  16. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  17. I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express15(25), 17433–17442 (2007).
    [CrossRef] [PubMed]
  18. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
    [CrossRef] [PubMed]
  19. T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
    [CrossRef] [PubMed]
  20. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
    [CrossRef] [PubMed]
  21. R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
    [CrossRef] [PubMed]
  22. K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
    [CrossRef] [PubMed]
  23. N. A. Abu-Hatab, J. F. John, J. M. Oran, and M. J. Sepaniak, “Multiplexed microfluidic surface-enhanced Raman spectroscopy,” Appl. Spectrosc.61(10), 1116–1122 (2007).
    [CrossRef] [PubMed]
  24. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008).
    [CrossRef] [PubMed]
  25. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
    [CrossRef] [PubMed]
  26. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).
  27. C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
    [CrossRef] [PubMed]
  28. S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
    [CrossRef] [PubMed]
  29. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 178–218 (2011).
  30. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
    [CrossRef] [PubMed]
  31. S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
    [CrossRef] [PubMed]
  32. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012).
    [CrossRef] [PubMed]
  33. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
    [CrossRef] [PubMed]
  34. L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A Pure Appl. Op. 10, 064013 (2008).
  35. O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
    [CrossRef]
  36. D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
    [CrossRef]
  37. F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
    [CrossRef]
  38. S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008).
    [CrossRef] [PubMed]
  39. S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
    [CrossRef] [PubMed]
  40. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008).
    [CrossRef] [PubMed]
  41. D. A. Cox, Galois theory (Wiley-Interscience, 2004).
  42. M. R. Schroeder, Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity (Springer, 2009).
  43. E. W. Weisstein, “Gaussian prime” (From MathWorld–A Wolfram Web Resource), retrieved http://mathworld.wolfram.com/GaussianPrime.html .
  44. J. Stillwell, Elements of number theory (Springer, 2003).
  45. E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
    [CrossRef]
  46. G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923).
    [CrossRef]
  47. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
    [CrossRef] [PubMed]
  48. S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
    [CrossRef]
  49. E. Maciá, “Physical nature of critical modes in Fibonacci quasicrystals,” Phys. Rev. B60(14), 10032–10036 (1999).
    [CrossRef]
  50. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
    [CrossRef] [PubMed]
  51. D. E. Newland, AniIntroduction to random vibrations, spectral and wavelet analysis (John Wiley & Sons, Incorporated, 1993).
  52. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
    [CrossRef] [PubMed]
  53. P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999).
    [CrossRef] [PubMed]
  54. C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
    [CrossRef]
  55. J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
    [CrossRef]
  56. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
    [CrossRef]
  57. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
    [CrossRef]
  58. A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
    [CrossRef]
  59. M. Polyanskiy, “RefractiveIndex.INFO” (2008), retrieved http://refractiveindex.info/?group=LIQUIDS&material=Glycerol .
  60. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

2012 (3)

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012).
[CrossRef] [PubMed]

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

2011 (3)

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
[CrossRef] [PubMed]

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

2010 (5)

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

2009 (4)

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
[CrossRef] [PubMed]

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

2008 (5)

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008).
[CrossRef] [PubMed]

2007 (4)

N. A. Abu-Hatab, J. F. John, J. M. Oran, and M. J. Sepaniak, “Multiplexed microfluidic surface-enhanced Raman spectroscopy,” Appl. Spectrosc.61(10), 1116–1122 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express15(25), 17433–17442 (2007).
[CrossRef] [PubMed]

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

2006 (4)

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
[CrossRef] [PubMed]

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

2005 (3)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
[CrossRef]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005).
[CrossRef] [PubMed]

2004 (2)

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004).
[CrossRef] [PubMed]

R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
[CrossRef] [PubMed]

2003 (2)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

2002 (4)

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
[CrossRef] [PubMed]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

2001 (1)

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

2000 (1)

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

1999 (2)

E. Maciá, “Physical nature of critical modes in Fibonacci quasicrystals,” Phys. Rev. B60(14), 10032–10036 (1999).
[CrossRef]

P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999).
[CrossRef] [PubMed]

1998 (2)

E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
[CrossRef]

O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
[CrossRef]

1993 (2)

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
[CrossRef]

1990 (1)

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

1987 (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
[CrossRef] [PubMed]

1923 (1)

G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923).
[CrossRef]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Abu-Hatab, N. A.

Ahmad, I. B.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Aksu, S.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Altug, H.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Amsden, J. J.

Berg, J. M.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

Bhagat, A. A.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Bow, H.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Cao, H.

Carcenac, F.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Chabinyc, M. L.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Chang, T.-Y.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Chang-Yen, D. A.

A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
[CrossRef]

Chen, Y.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Cheng, C. C.

O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
[CrossRef]

Chikae, M.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Chiu, D. T.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Choi, C. J.

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

Choi, C.-H.

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

Chow, E.

Christensen, A. M.

A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
[CrossRef]

Christian, J. F.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Colocci, M.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Connatser, R. M.

R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
[CrossRef] [PubMed]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

Cunningham, B. T.

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

Dal Negro, L.

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012).
[CrossRef] [PubMed]

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
[CrossRef] [PubMed]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008).
[CrossRef] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Dallapiccola, R.

Datta, A.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

Davies, J.

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

Dial, O.

O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
[CrossRef]

Do, J.

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Emery, T.

Endo, T.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Erickson, D.

Fan, X.

Feng, J.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Feng, N.-N.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Forestiere, C.

Gaburro, Z.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Gale, B. K.

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
[CrossRef]

Galli, P.

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

Garbassi, F.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Gethner, E.

E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
[CrossRef]

Girolami, G.

Gohring, J.

Gopinath, A.

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

Grot, A.

Han, J.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Hardy, G.

G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923).
[CrossRef]

Hiep, H. M.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Hill, P.

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

Ho, C.-M.

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

Höddelius, P. L.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Hoffmann, A.

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

Hou, H. W.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Huang, M.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Humphrey, P.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
[CrossRef] [PubMed]

John, J. F.

Johnson, D.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Johnson, M.

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

Johnson, P.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Kaplan, D. L.

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

Karger, A. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Katsumoto, S.

S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
[CrossRef]

Kermam, K.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Kho, K. W.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Kim, C.-J.

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

Kim, D.-K.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Kim, J.

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

Klapperich, C. M.

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

Kobayashi, S.-i.

S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
[CrossRef]

Kohmoto, M.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
[CrossRef] [PubMed]

Ksendzov, A.

Kutter, J. P.

Lagendijk, A.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Launois, H.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Lebib, A.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Lee, S. Y.

S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
[CrossRef] [PubMed]

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

Lee, S. Y. K.

Li, P.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Liew, S. F.

Ligler, F. S.

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
[CrossRef] [PubMed]

Lim, C. T.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Lim, S. S. C.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

Lin, D.

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

Lin, Y.

Lipman, E. A.

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

Littlewood, J.

G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Maciá, E.

E. Maciá, “Physical nature of critical modes in Fibonacci quasicrystals,” Phys. Rev. B60(14), 10032–10036 (1999).
[CrossRef]

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Magnusson, K. E.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Manin-Ferlazzo, L.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Marola, R.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Maynes, D.

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

McDonald, J. C.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Mehta, V.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Mhaisalkar, S.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Mirkarimi, L. W.

Mitropolous, A.

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

Mogensen, K. B.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Mondia, J. P.

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Morra, M.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Mortensen, N. A.

Negro, L. D.

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Noh, H.

Nunes, P. S.

Occhiello, E.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

Olivo, M.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Omenetto, F. G.

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

Oran, J. M.

Oton, C. J.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Pacifici, D.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Palmore, G. T. R.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Pasquale, A. J.

Pavesi, L.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Perry, H.

Petersen, N. O.

P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999).
[CrossRef] [PubMed]

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Pfeil, S. H.

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

Premasiri, W. R.

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Psaltis, D.

Qing, K. Z. M.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

Quake, S. R.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Reinhard, B. M.

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Rhieu, S. Y.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Riddle, L. A.

R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
[CrossRef] [PubMed]

Righini, R.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Rockwood, T.

Roelke, A.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Romagnoli, M.

Sano, N.

S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
[CrossRef]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
[CrossRef] [PubMed]

O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
[CrossRef]

Seger, O.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Sepaniak, M. J.

N. A. Abu-Hatab, J. F. John, J. M. Oran, and M. J. Sepaniak, “Multiplexed microfluidic surface-enhanced Raman spectroscopy,” Appl. Spectrosc.61(10), 1116–1122 (2007).
[CrossRef] [PubMed]

R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
[CrossRef] [PubMed]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Shen, Z. X.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Shi, P.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Sigalas, M.

Siu, V. S.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

Soo, K. C.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Stellacci, F.

Stroock, A. D.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Sutherland, B.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
[CrossRef] [PubMed]

Takamura, Y.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Tamiya, E.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Tan, S. J.

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Tao, H.

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

Thorsen, T.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Trevino, J.

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012).
[CrossRef] [PubMed]

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
[CrossRef] [PubMed]

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Tsai, H.-Y.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Ulmanella, U.

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

Vieu, C.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Wagon, S.

E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
[CrossRef]

Walsh, G.

Watt, F.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Webb, B. W.

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

White, I. M.

White, T. J.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

Whitesides, G. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Wick, B.

E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
[CrossRef]

Wickersham, C. E.

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

Wiersma, D. S.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

Wiseman, P. W.

P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999).
[CrossRef] [PubMed]

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Woolford, B.

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

Yamamura, S.

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Yan, B.

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

Yang, L.

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

Yanik, A. A.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Yanik, M. F.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Zhang, J. Y.

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

Ziegler, L. D.

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

Acta Math. (1)

G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923).
[CrossRef]

Adv. Funct. Mater. (1)

L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012).
[CrossRef]

Am. Math. Mon. (1)

E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998).
[CrossRef]

Anal. Chem. (2)

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Biophys. J. (2)

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999).
[CrossRef] [PubMed]

Integr Biol (Camb) (1)

J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005).
[CrossRef]

J. Sep. Sci. (1)

R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (1)

O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998).
[CrossRef]

Lab Chip (3)

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010).
[CrossRef] [PubMed]

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000).
[CrossRef]

Nano Lett. (3)

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012).
[CrossRef] [PubMed]

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Opt. Express (7)

I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express15(25), 17433–17442 (2007).
[CrossRef] [PubMed]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009).
[CrossRef] [PubMed]

S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008).
[CrossRef] [PubMed]

S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010).
[CrossRef] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011).
[CrossRef] [PubMed]

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Fluids (2)

C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006).
[CrossRef]

J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006).
[CrossRef]

Phys. Rev. B (1)

E. Maciá, “Physical nature of critical modes in Fibonacci quasicrystals,” Phys. Rev. B60(14), 10032–10036 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003).
[CrossRef] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater. (1)

H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007).
[CrossRef]

Science (1)

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Sens. Actuators B (2)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

Sens. Actuators B Chem. (1)

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Solid State Commun. (1)

S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993).
[CrossRef]

Other (10)

L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A Pure Appl. Op. 10, 064013 (2008).

D. E. Newland, AniIntroduction to random vibrations, spectral and wavelet analysis (John Wiley & Sons, Incorporated, 1993).

M. Polyanskiy, “RefractiveIndex.INFO” (2008), retrieved http://refractiveindex.info/?group=LIQUIDS&material=Glycerol .

J. Y. Zhang, Q. Cao, M. Mahalanabis, and C. M. Klapperich, “Integrated microfluidic sample preparation for chip based molecular diagnostics.,” in Microfluidic Applications for Human Health, U. Demirci, A. Khademhosseini, R. Langer, and J. Blander, eds. (World Scientific Publishing Co., Hackensack, NJ, USA, 2012).

X. Fan, Advanced photonic structure for biological and chemical detection (Springer, 2009).

L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 178–218 (2011).

D. A. Cox, Galois theory (Wiley-Interscience, 2004).

M. R. Schroeder, Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity (Springer, 2009).

E. W. Weisstein, “Gaussian prime” (From MathWorld–A Wolfram Web Resource), retrieved http://mathworld.wolfram.com/GaussianPrime.html .

J. Stillwell, Elements of number theory (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Representative two-dimensional aperiodic structures of (a) Galois array (N = 1984), (b) Gaussian Prime array (N = 2124), and (c) Fibonacci array (N = 1428). (d)-(f) Fourier Transform, with DC component removed, of the corresponding structures in reciprocal space and (g)-(i) the scanning electron micrographs of the corresponding nanofabricated structures. Scale bars equal to 1μm in (g)-(i), and 150nm in inserts.

Fig. 2
Fig. 2

(a) Fabrication process flow of PDMS microchannel and microfluidic integration with colorimetric DANS sensing structures. (b) A digital image of a representative optofluidic DANS device, and (c) its corresponding microscope image of the microfluidic flow cell 28μm in height, 3.5mm in length, and 2.5mm in width, with different 2D aperiodic arrays. Scale bar equals to 100μm in (c). The vertical lines are 1μm-thick filling groove in the ceiling of the chamber.

Fig. 3
Fig. 3

DANS arrays were imaged in a dark field oil immersion configuration under white light illumination and the corresponding colorimetric fingerprints were collected by a 10X (NA 0.25) microscope objective. (a)-(c) Galois arrays with 150nm diameter nanoparticles and correspondingly 250nm, 300nm and 350nm minimum center-to-center interparticle separation. (d)-(f) Gaussian prime arrays with 75nm, 100nm and 150nm diameter nanoparticles and correspondingly 125nm, 150nm, and 200nm minimum center-to-center interparticle separation. (g)-(i) Fibonacci arrays with 150nm diameter nanoparticles and correspondingly 250nm, 300nm and 350nm minimum center-to-center interparticle separation.

Fig. 4
Fig. 4

Dark field spectral measurements and normalized ACF profiles corresponding to one spectral component (652nm) of the colorimetric fingerprint of the aperiodic arrays of (a) and (d) Galois (150nm diameter, 300nm interparticle separation), (b) and (e) Gaussian prime (100nm diameter, 150nm interparticle separation), and (c) and (f) Fibonacci (150nm diameter, 300nm interparticle separation) arrays inside a microfluidic flow cell in response to different refractive index changes of air (black) and glycerol solution in concentration of 0% (magenta, n = 1.333), 25% (dark yellow, n = 1.398), 50% (blue, n = 1.398), 75% (green, n = 1.435), and 100% (red, n = 1.474).

Fig. 5
Fig. 5

(a) Peak wavelength shift of the representative Galois (solid), Gaussian prime (dashed) and Fibonacci (dot) arrays in response to changes of refractive index in Figs. 4(a)-4(c) and linear spectral sensitivities (ηs = Δλ/Δn) are approximately 267nm/RIU, 145nm/RIU, and 166nm/RIU, correspondingly. (b) Spatial modifications of colorimetric fingerprints correspond to one spectral color (652nm) of the representative Galois (solid), Gaussian prime (dashed) and Fibonacci (dot) arrays in response to changes of refractive index in Figs. 4(d)-4(f) and linear colorimetric sensitivities (ηc = Δσ/Δn) are approximately 0.047RIU−1, 0.048RIU−1, and 0.011RIU−1, correspondingly. (c) Spectral sensitivity of the peak wavelength shift with respective to the corresponding refractive index change. (d) Sensitivity matrix in both spectral and colorimetric sensitivities of all the investigated DANS arrays, including Galois arrays with interparticle separations of 250nm (light blue), 300nm (blue), and 350nm (dark blue); Gaussian prime arrays with nanoparticle diameters of 125nm (pink), 150nm (red) and 200nm (dark red); Fibonacci arrays with interparticle separations of 250nm (light green), 300nm (yellow green), and 350nm (dark green).

Tables (1)

Tables Icon

Table 1 Geometric parameters of investigated aperiodic arrays. (All units are in micrometers)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ a k }=10001001101010111.
a k+4 = a k+1 + a k
Z[i]={ a+bi | a,bZ }
E[ y 2 ]= + | H(ω) | 2 S x (ω)dω=G(ξ=0).
G(ξ)= s(x)s(x+ξ) ,
g(ξ,η)= δs(x,y)δs(x+ξ,y+η) = G(ξ,η) s(x,y) 2 1 .
G(ξ,η)= F 1 {[ F(s(x,y)) ][ F (s(x,y)) ]}.
varδs(x,y)= lim ξ0 lim η0 g(ξ,η)=g(0,0).

Metrics