Abstract

We designed an all-fiber mode-locked Erbium laser with optically stabilized repetition rate of 31.4 MHz. The stabilization was achieved by changing the refractive index of an Ytterbium-doped fiber in the resonator via optical pumping at a wavelength of 978 nm; and for long-term stability the local temperature of the fiber was additionally controlled with a thermo-electric element. The repetition rate was stabilized over 12 hours, and an Allan deviation of 2.5 × 10−12 for an averaging time of 1 s could be achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
    [CrossRef]
  2. C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
    [CrossRef]
  3. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Ostermann, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20, 6631–6643 (2012).
    [CrossRef] [PubMed]
  4. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002).
    [CrossRef]
  5. W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729nm laser,” Opt. Express17, 6059–6067 (2009).
    [CrossRef] [PubMed]
  6. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004).
    [CrossRef] [PubMed]
  7. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber laser,” Opt. Lett.35, 3522–3524 (2010).
    [CrossRef] [PubMed]
  8. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
    [CrossRef] [PubMed]
  9. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
    [CrossRef]
  10. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
    [CrossRef] [PubMed]
  11. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, and M. F. Yan, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29, 250–252 (2004).
    [CrossRef] [PubMed]
  12. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the frequency comb from a mode-locked Erbium-doped fiber laser,” Opt. Express10, 1404–1410 (2002).
    [CrossRef] [PubMed]
  13. T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
    [CrossRef]
  14. R. de L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am.12, 547–557 (1926).
    [CrossRef]
  15. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm,” Opt. Lett.36, 448–450 (2011).
    [CrossRef] [PubMed]
  16. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
    [CrossRef]
  17. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and Theoretical Analysis of the Resonant Nonlinearity in Ytterbium-Doped Fiber,” J. Lightwave Technol.16, 798–806 (1998).
    [CrossRef]
  18. S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996).
    [CrossRef]
  19. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express16, 12658–12663 (2008).
    [CrossRef] [PubMed]
  20. A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, “All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers,” Opt. Lett.34, 3574–3576 (2009).
    [CrossRef] [PubMed]
  21. S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).
  22. Corning SMF-28e+ Optical Fiber Product Information (2006).
  23. K. R. Tamura, Additive Pulse Mode-Locked Erbium-Doped Fiber Lasers, PhD. thesis (Massachusetts Institute of Technology, 1994), http://hdl.handle.net/1721.1/11851 .
  24. R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 6th ed. (McGraw-Hill, 2007).
  25. IEEE-SA Standards Board, “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology – Random Instabilities,” IEEE Std1139–2008.
  26. D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE54, 221–230 (1966).
    [CrossRef]
  27. K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
    [CrossRef]
  28. C. Ye, J. J. Montiel, i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt.49, 5799–5805 (2010).
    [CrossRef] [PubMed]
  29. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34, 1285–1287 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm,” Opt. Lett.36, 448–450 (2011).
[CrossRef] [PubMed]

D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
[CrossRef] [PubMed]

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

2010 (2)

2009 (3)

2008 (2)

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express16, 12658–12663 (2008).
[CrossRef] [PubMed]

2004 (4)

2002 (2)

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the frequency comb from a mode-locked Erbium-doped fiber laser,” Opt. Express10, 1404–1410 (2002).
[CrossRef] [PubMed]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002).
[CrossRef]

2001 (1)

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

2000 (1)

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

1998 (1)

1997 (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

1996 (1)

S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE54, 221–230 (1966).
[CrossRef]

1926 (1)

Adler, F.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004).
[CrossRef] [PubMed]

Allan, D. W.

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE54, 221–230 (1966).
[CrossRef]

Antipov, O. L.

Arkwright, J. W.

Atkins, G. R.

Bartels, A.

Bender, C. F.

Best, R. E.

R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 6th ed. (McGraw-Hill, 2007).

Botzer, B.

Chang, S.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Chuang, W.-C.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Cleff, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

Cox, J. A.

Cundiff, S. T.

Diddams, S. A.

Digonnet, M. J. F.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and Theoretical Analysis of the Resonant Nonlinearity in Ytterbium-Doped Fiber,” J. Lightwave Technol.16, 798–806 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

Du, Q.

Elango, P.

Engholm, M.

Epping, J.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

Fallnich, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
[CrossRef] [PubMed]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
[CrossRef]

Ferrando-May, E.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

Fleming, S. C.

S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996).
[CrossRef]

Fortier, T. M.

Fotiadi, A. A.

Grosche, G.

Gross, P.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

Han, H.

Haverkamp, N.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
[CrossRef]

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
[CrossRef] [PubMed]

Heinecke, D. C.

Hong, F.-L.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Honkanen, S.

Hsu, C.-C.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Huang, T.-H.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Hundertmark, H.

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
[CrossRef] [PubMed]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
[CrossRef]

Ikegami, T.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Jelger, P.

Jeromin, A.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

Jones, D. J.

Kärtner, F. X.

Kim, J.

Knight, J. C.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Kracht, D.

Kronig, R. de L.

Laurell, F.

Leitenstorfer, A.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004).
[CrossRef] [PubMed]

Leung, C.-Y.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Lipphardt, B.

Löser, M.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

Mahadevan, S.

Matsumoto, H.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Mégret, P.

Minoshima, K.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Montiel, J. J.

Moutzouris, K.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004).
[CrossRef] [PubMed]

Nejadmalayeri, A. H.

Neumann, J.

Newbury, N. R.

Nicholson, J. W.

Norin, L.

Onae, A.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Ostermann, S.

Pantell, R. H.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

Ponsoda, i

Quinlan, F.

Ramsey, L.

Rauschenberger, J.

Redman, S.

Russell, P. St. J.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

Schnatz, H.

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

Shieh, J.-Y.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Sigurdsson, S.

Slyusarev, S.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Stenger, J.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002).
[CrossRef]

Sugiyama, K.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Tauser, F.

Telle, H. R.

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
[CrossRef] [PubMed]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002).
[CrossRef]

Terrien, R.

Tervonen, A.

Träutlein, D.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

Tsai, Y.-S.

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

Tünnermann, H.

Wadsworth, W. J.

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Walbaum, T.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

Wandt, D.

Washburn, B. R.

Wei, Z.

Weßels, P.

Whitbread, T.

Whitley, T. J.

S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996).
[CrossRef]

Yan, M. F.

Ycas, G. G.

Ye, C.

Ye, J.

Zakharov, N.

Zhang, W.

Zhao, Y.

Appl. Opt. (1)

Appl. Phys. B (4)

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B103, 795–800 (2011).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74, 1–6 (2002).
[CrossRef]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78, 321–324 (2004).
[CrossRef]

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011).
[CrossRef]

Chinese J. Phys. (1)

S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne Interferometric Measurement of the Thermo-Optic Coefficient of Single Mode Fiber,” Chinese J. Phys.38, 437–442 (2000).

IEEE J. Quantum Electron. (1)

S. C. Fleming and T. J. Whitley, “Measurement and Analysis of Pump-Dependent Refractive Index and Dispersion Effects in Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron.32, 1113–1121 (1996).
[CrossRef]

J. Biophotonics (1)

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, “Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source,” J. Biophotonics1, 53–61 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (7)

D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
[CrossRef] [PubMed]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Ostermann, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20, 6631–6643 (2012).
[CrossRef] [PubMed]

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the frequency comb from a mode-locked Erbium-doped fiber laser,” Opt. Express10, 1404–1410 (2002).
[CrossRef] [PubMed]

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express12, 770–775 (2004).
[CrossRef] [PubMed]

F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express12, 5872–5880 (2004).
[CrossRef] [PubMed]

A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express16, 12658–12663 (2008).
[CrossRef] [PubMed]

W. Zhang, H. Han, Y. Zhao, Q. Du, and Z. Wei, “A 350MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729nm laser,” Opt. Express17, 6059–6067 (2009).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review,” Opt. Fiber Technol.3, 44–64 (1997).
[CrossRef]

Opt. Lett. (5)

Proc. IEEE (1)

D. W. Allan, “Statistics of Atomic Frequency Standards,” Proc. IEEE54, 221–230 (1966).
[CrossRef]

Proc. SPIE (1)

K. Sugiyama, A. Onae, T. Ikegami, S. Slyusarev, F.-L. Hong, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al2O3 laser for comparison between microwave and optical frequencies,” Proc. SPIE4269, 95–104 (2001).
[CrossRef]

Other (4)

Corning SMF-28e+ Optical Fiber Product Information (2006).

K. R. Tamura, Additive Pulse Mode-Locked Erbium-Doped Fiber Lasers, PhD. thesis (Massachusetts Institute of Technology, 1994), http://hdl.handle.net/1721.1/11851 .

R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, 6th ed. (McGraw-Hill, 2007).

IEEE-SA Standards Board, “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology – Random Instabilities,” IEEE Std1139–2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup of the repetition-rate-controlled fiber laser. LD: laser diode; WDM: wavelength division multiplexer; RWDM: reflective wavelength division multiplexer; PBS: polarizing beam splitter; PC: polarization controller; ASE: amplified spontaneous emission.

Fig. 2
Fig. 2

Fluctuations of the repetition rate in stabilized (a), as well as in free-running mode (b).

Fig. 3
Fig. 3

Overlapping Allan deviation of the laser’s repetition rate in stabilized operation. The solid line is a τ−1 slope for comparison.

Metrics