Abstract

Hybrid Lighting-CPV concept mixes illumination using low-cost fiber optics for light transmission with conventional Concentrating Photovoltaic (CPV) technology. This approach may offer an important increase in the value of a CPV system. Direct illumination from sunlight with fibers does not require the double light-electricity-light energy conversion allowing for efficient lighting using just a small area of the CPV system, preferably those areas with lower CPV efficiency conversion. Simultaneously the need of concentration and tracking required is completely covered by the infrastructure of the CPV system. In this work, we present a theoretical study of the losses in optical fibers in order to establish the design criteria for the hybrid system. Losses caused by chromatic aberration increase with f-number while transmission losses in the fiber decrease.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
    [CrossRef]
  2. J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
    [CrossRef]
  3. J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy78(2), 211–222 (2005).
    [CrossRef]
  4. H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
    [CrossRef]
  5. Parans Solar Lighting AB,“Brochure” (2009).
  6. Himawari Solar Lighting system, “Catalogue” (2009).
  7. O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
    [CrossRef]
  8. D. Feuermann and J. M. Gordon, “Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight,” Sol. Energy65(3), 159–170 (1999).
    [CrossRef]
  9. P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
    [CrossRef]
  10. M. Tekelioglu and B. D. Wood, “Solar light transmission of polymer optical fibers,” Sol. Energy83(11), 2039–2049 (2009).
    [CrossRef]
  11. L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).
  12. P. J. Littlefair, “The luminous efficacy of daylight: a review,” Lighting Res. Tech.17(4), 162–182 (1985).
    [CrossRef]
  13. I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
    [CrossRef]
  14. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
    [CrossRef]
  15. D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
    [CrossRef]
  16. A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
    [CrossRef]
  17. M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Appl. Opt.44(12), 2318–2326 (2005).
    [CrossRef] [PubMed]

2011 (1)

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

2009 (1)

M. Tekelioglu and B. D. Wood, “Solar light transmission of polymer optical fibers,” Sol. Energy83(11), 2039–2049 (2009).
[CrossRef]

2008 (1)

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

2007 (2)

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
[CrossRef]

2005 (3)

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Appl. Opt.44(12), 2318–2326 (2005).
[CrossRef] [PubMed]

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy78(2), 211–222 (2005).
[CrossRef]

2004 (1)

A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
[CrossRef]

2002 (1)

D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
[CrossRef]

2001 (1)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

1999 (2)

O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
[CrossRef]

D. Feuermann and J. M. Gordon, “Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight,” Sol. Energy65(3), 159–170 (1999).
[CrossRef]

1998 (1)

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

1985 (1)

P. J. Littlefair, “The luminous efficacy of daylight: a review,” Lighting Res. Tech.17(4), 162–182 (1985).
[CrossRef]

Antón, I.

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Appajaiah, A.

A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
[CrossRef]

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Bett, A. W.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Boos, A.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Collares-Pereira, M.

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Coventry, J. S.

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy78(2), 211–222 (2005).
[CrossRef]

Daum, W.

A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
[CrossRef]

Dimroth, F.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Epstein, M.

A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
[CrossRef]

Feuermann, D.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
[CrossRef]

D. Feuermann and J. M. Gordon, “Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight,” Sol. Energy65(3), 159–170 (1999).
[CrossRef]

Fontani, D.

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Francini, F.

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Fraser Monteiro, L.

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Fraser Monteiro, M.

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Gordon, J. M.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
[CrossRef]

D. Feuermann and J. M. Gordon, “Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight,” Sol. Energy65(3), 159–170 (1999).
[CrossRef]

Heimsath, A.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Helmers, H.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Huleihil, M.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
[CrossRef]

Ibáñez, M.

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

Jafrancesco, D.

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Jetter, F.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Karni, J.

O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
[CrossRef]

Kretzschmar, H.-J.

A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
[CrossRef]

Kribus, A.

O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
[CrossRef]

Kurtz, S.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Lechón, M. A.

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

Liang, L. D.

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Littlefair, P. J.

P. J. Littlefair, “The luminous efficacy of daylight: a review,” Lighting Res. Tech.17(4), 162–182 (1985).
[CrossRef]

Luque-Heredia, I.

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Mercatelli, L.

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Ribau Teixeira, M.

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Rosell, J. I.

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

Sala, G.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Sansoni, P.

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Segal, A.

A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
[CrossRef]

Siefer, G.

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Silva, D.

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Tekelioglu, M.

M. Tekelioglu and B. D. Wood, “Solar light transmission of polymer optical fibers,” Sol. Energy83(11), 2039–2049 (2009).
[CrossRef]

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Appl. Opt.44(12), 2318–2326 (2005).
[CrossRef] [PubMed]

Trebst, T.

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Vallverdú, X.

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

Wiesenfarth, M.

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Wood, B. D.

M. Tekelioglu and B. D. Wood, “Solar light transmission of polymer optical fibers,” Sol. Energy83(11), 2039–2049 (2009).
[CrossRef]

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Appl. Opt.44(12), 2318–2326 (2005).
[CrossRef] [PubMed]

Yogev, A.

A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
[CrossRef]

Zik, O.

O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
[CrossRef]

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

AIP Conf. Proc. (1)

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, A. W. Bett, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Outdoor test setup for concentrating photovoltaic and thermal (CPVT) systems,” AIP Conf. Proc.1407, 175–179 (2011).
[CrossRef]

Appl. Opt. (1)

Energy Convers. Manage. (1)

J. I. Rosell, X. Vallverdú, M. A. Lechón, and M. Ibáñez, “Design and simulation of a low concentrating photovoltaic/thermal system,” Energy Convers. Manage.46(18-19), 3034–3046 (2005).
[CrossRef]

J. Appl. Polym. Sci. (1)

A. Appajaiah, H.-J. Kretzschmar, and W. Daum, “Aging behavior of polymer optical fibers: Degradation characterization by FTIR,” J. Appl. Polym. Sci.103(2), 860–870 (2007).
[CrossRef]

Lighting Res. Tech. (2)

P. J. Littlefair, “The luminous efficacy of daylight: a review,” Lighting Res. Tech.17(4), 162–182 (1985).
[CrossRef]

P. Sansoni, F. Francini, D. Fontani, L. Mercatelli, and D. Jafrancesco, “Indoor illumination by solar light collectors,” Lighting Res. Tech.40(4), 323–332 (2008).
[CrossRef]

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

I. Antón, D. Silva, G. Sala, A. W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells,” Prog. Photovolt. Res. Appl.15(5), 431–447 (2007).
[CrossRef]

Sol. Energy (6)

D. Feuermann, J. M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators,” Sol. Energy72(3), 195–204 (2002).
[CrossRef]

A. Segal, M. Epstein, and A. Yogev, “Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands,” Sol. Energy76(5), 591–601 (2004).
[CrossRef]

M. Tekelioglu and B. D. Wood, “Solar light transmission of polymer optical fibers,” Sol. Energy83(11), 2039–2049 (2009).
[CrossRef]

O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Sol. Energy67(1-3), 13–22 (1999).
[CrossRef]

D. Feuermann and J. M. Gordon, “Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight,” Sol. Energy65(3), 159–170 (1999).
[CrossRef]

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy78(2), 211–222 (2005).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

L. D. Liang, L. Fraser Monteiro, M. Ribau Teixeira, M. Fraser Monteiro, and M. Collares-Pereira, “Fiber-optic solar energy transmission and concentration,” Sol. Energy Mater. Sol. Cells54, 323–331 (1998).

Other (2)

Parans Solar Lighting AB,“Brochure” (2009).

Himawari Solar Lighting system, “Catalogue” (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Artist’s impression of the use of optical fibers in a CPV bi-concentration parquet of lenses.

Fig. 2
Fig. 2

Comparative schema: classic CPV and Hybrid Lighting-CPV.

Fig. 3
Fig. 3

Angular transmission function for a fiber 2 m long and 3 mm in diameter (αcore = 3.5 × 10−5 m−1 and kcladding = 1 × 10−5).

Fig. 4
Fig. 4

Transmission function vs. f-number for a fiber of NA = 0.5 (αcore = 3.5 × 10−5 m−1 and kcladding = 1 × 10−5).

Fig. 5
Fig. 5

Global transmission efficiency, obtained as a product of the fiber and optical efficiencies, versus f-number for a fiber of NA = 0.55 (PMMA fiber of length 2 m and diameter 3 mm, αcore = 3.5 × 10−5 m−1, and kcladding = 1 × 10−5).

Fig. 6
Fig. 6

Sensor based on a solar cell to measure light transmission of optical fibers, including a photopic filter.

Fig. 7
Fig. 7

Spectral transmittance of 1 meter of a PMMA fiber and the luminous efficacy function.

Fig. 8
Fig. 8

Angular transmission function experimentally obtained for a plastic fiber of NA = 0.55 (αcore = 3 × 10−2 m−1 and kcladding = 1 × 10−4).

Fig. 9
Fig. 9

Theoretical and measured efficiency of the lighting subsystem (PMMA fiber of length 2 m and diameter 3 mm).

Fig. 10
Fig. 10

Measured fiber temperature as a function of the concentration ratio.

Fig. 11
Fig. 11

Schematic showing the parameters of the optical fiber and the lens.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

NA=nsin θ inc,max ,
C max = ( nsin θ inc,max sin θ sun ) 2 = N A 2 sin 2 θ sun ,
f#= 1 2tan θ inc_max ,
T fiber_cone ( f# )= 0 f# T fiber ( θ inc )d θ inc .
f lighting f CPV % fiber 100 ,
θ core = sin 1 ( n air n core sin θ inc ).
N ref ( θ core )= L d tan θ core .
L opt ( θ core )= L cos θ core .
k cladding = α cladding λ 4π .
R = [ cos θ reb n rel 2 sin 2 θ reb cos θ reb + n rel 2 sin 2 θ reb ] 2 ,
R = [ cos θ reb n rel 2 sin 2 θ reb cos θ reb + n rel 2 sin 2 θ reb ] 2 ,
η TIR ( θ reb )= | R |+| R | 2 ,
T fiber ( θ core )= e α core L opt η TIR N ref ,

Metrics