Abstract

Femtosecond laser pulses filamenting in various gases are shown to generate long- lived quasi-stationary cylindrical depressions or ‘holes’ in the gas density. For our experimental conditions, these holes range up to several hundred microns in diameter with gas density depressions up to ~20%. The holes decay by thermal diffusion on millisecond timescales. We show that high repetition rate filamentation and supercontinuum generation can be strongly affected by these holes, which should also affect all other experiments employing intense high repetition rate laser pulses interacting with gases.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
    [CrossRef]
  2. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).
  3. S. A. Trushin, K. Kosma, W. Fuss, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett.32(16), 2432–2434 (2007).
  4. N. Zhavoronkov, “Efficient spectral conversion and temporal compression of femtosecond pulses in SF6.,” Opt. Lett.36(4), 529–531 (2011).
    [CrossRef] [PubMed]
  5. C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. Dimauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament,” Opt. Lett.32(7), 868–870 (2007).
  6. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).
  7. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett.31(2), 274–276 (2006).
    [CrossRef] [PubMed]
  8. F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
    [CrossRef]
  9. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
    [CrossRef] [PubMed]
  10. J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
    [CrossRef]
  11. T. R. Clark and H. M. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
    [CrossRef]
  12. T. R. Clark and H. M. Milchberg, “Time-evolution and guiding regimes of the laser-produced plasma waveguide,” Phys. Plasmas7(5), 2192–2197 (2000).
    [CrossRef]
  13. Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O,” Opt. Express15(18), 11341–11357 (2007).
    [CrossRef] [PubMed]
  14. J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
    [CrossRef] [PubMed]
  15. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).
  16. J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).
  17. K. P. Birch, “Precise determination of refractometric parameters for atmospheric gases,” J. Opt. Soc. Am. A8(4), 647–651 (1991).
    [CrossRef]
  18. M. D. Feit and J. A. Fleck., “Light propagation in graded-index optical fibers,” Appl. Opt.17(24), 3990–3998 (1978).
  19. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express10(26), 1563–1572 (2002).
  20. Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
    [CrossRef] [PubMed]
  21. C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
    [CrossRef]
  22. http://webbook.nist.gov/chemistry/fluid/
  23. W. M. Haynes, Handbook of Chemistry and Physics, 93rd edition (CRC Press, 2012), http://www.hbcpnetbase.com/
  24. D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express14(17), 7552–7558 (2006).
    [CrossRef] [PubMed]
  25. J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
    [CrossRef]
  26. S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
    [CrossRef]

2012

J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
[CrossRef]

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

2011

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

N. Zhavoronkov, “Efficient spectral conversion and temporal compression of femtosecond pulses in SF6.,” Opt. Lett.36(4), 529–531 (2011).
[CrossRef] [PubMed]

2010

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

2009

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

2007

2006

2004

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

2002

2001

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

2000

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

T. R. Clark and H. M. Milchberg, “Time-evolution and guiding regimes of the laser-produced plasma waveguide,” Phys. Plasmas7(5), 2192–2197 (2000).
[CrossRef]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

1997

T. R. Clark and H. M. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

1991

1986

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).

1978

Agostini, P.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

Alexeev, I.

Antonsen, T.

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Antonsen, T. M.

J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
[CrossRef]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Birch, K. P.

Blaga, C. I.

Bochkarev, N. N.

Catoire, F.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

Chen, Y.-H.

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O,” Opt. Express15(18), 11341–11357 (2007).
[CrossRef] [PubMed]

Cheng, Y.-H.

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

Chien, C.-Y.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Chirla, R.

Clark, T. R.

T. R. Clark and H. M. Milchberg, “Time-evolution and guiding regimes of the laser-produced plasma waveguide,” Phys. Plasmas7(5), 2192–2197 (2000).
[CrossRef]

T. R. Clark and H. M. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

Colosimo, P.

Comtois, D.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Cryan, J.

Desparois, A.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

DiMauro, L. F.

Doumy, G.

Fallahkair, A. B.

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Feit, M. D.

Fleck, J. A.

Franco, M.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

Fuss, W.

Hauri, C. P.

C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. Dimauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament,” Opt. Lett.32(7), 868–870 (2007).

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Hüller, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

Johnston, T. W.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Kartashov, D. V.

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Kieffer, J.-C.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Kim, K. Y.

Kirsanov, A. V.

Kiselev, A. M.

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

Kosma, K.

La Fontaine, B.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Lopez-Martens, R. B.

March, A. M.

Mercure, H. P.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Milchberg, H. M.

J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O,” Opt. Express15(18), 11341–11357 (2007).
[CrossRef] [PubMed]

K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot measurement of laser-induced double step ionization of helium,” Opt. Express10(26), 1563–1572 (2002).

T. R. Clark and H. M. Milchberg, “Time-evolution and guiding regimes of the laser-produced plasma waveguide,” Phys. Plasmas7(5), 2192–2197 (2000).
[CrossRef]

T. R. Clark and H. M. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

Mora, P.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

Muller, H. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

Palastro, J. P.

J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
[CrossRef]

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Paulus, G. G.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

Pepin, H.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Ponomarev, Y. N.

Power, E. P.

Prade, B.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

Rizk, F. A.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Roedig, C.

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).

Rosenthal, E. W.

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Schmid, W. E.

Schultz, K. D.

Sistrunk, E.

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).

Steinmeyer, G.

Stepanov, A. N.

Stibenz, G.

Tate, J.

Tikhomirov, B. A.

Trushin, S. A.

Tzortzakis, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

Varma, S.

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O,” Opt. Express15(18), 11341–11357 (2007).
[CrossRef] [PubMed]

Varma, S. R.

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

Vidal, F.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

Wahlstrand, J. K.

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

Wheeler, J.

York, A.

Zhavoronkov, N.

Appl. Opt.

Appl. Phys. B

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004).

IEEE J. Quantum Electron.

J. K. Wahlstrand, Y.-H. Chen, Y.-H. Cheng, S. R. Varma, and H. M. Milchberg, “Measurements of the high field optical nonlinearity and electron density in gases: application to filamentation experiments,” IEEE J. Quantum Electron.48(6), 760–767 (2012).

IEEE Trans. Plasma Sci.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci.28(2), 418–433 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Phys.

C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Strong-field photoionization revisited,” Nat. Phys.5(5), 335–338 (2009).
[CrossRef]

Opt. Commun.

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000).

Opt. Express

Opt. Lett.

Phys. Plasmas

T. R. Clark and H. M. Milchberg, “Time-evolution and guiding regimes of the laser-produced plasma waveguide,” Phys. Plasmas7(5), 2192–2197 (2000).
[CrossRef]

Phys. Rep.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A

J. P. Palastro, T. M. Antonsen, and H. M. Milchberg, “Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere,” Phys. Rev. A86(3), 033834 (2012).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, and H. M. Milchberg, “Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar,” Phys. Rev. A85(4), 043820 (2012).
[CrossRef]

S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen, and H. M. Milchberg, “Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments,” Phys. Rev. A86(2), 023850 (2012).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond laser-guided electric discharge in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 057401 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57(18), 2268–2271 (1986).

T. R. Clark and H. M. Milchberg, “Time- and space-resolved density evolution of the plasma waveguide,” Phys. Rev. Lett.78(12), 2373–2376 (1997).
[CrossRef]

J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107(10), 103901 (2011).
[CrossRef] [PubMed]

Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105(21), 215005 (2010).
[CrossRef] [PubMed]

Other

http://webbook.nist.gov/chemistry/fluid/

W. M. Haynes, Handbook of Chemistry and Physics, 93rd edition (CRC Press, 2012), http://www.hbcpnetbase.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Filament core spectrum vs. propagation distance as a function of pump energy and repetition rate. Propagation distance is measured with respect to the vacuum focus. The laser pulse propagates from below in these panels. The white dotted line shows the position of beam collapse to a filament.

Fig. 2
Fig. 2

Supercontinuum spectra vs. laser pulse energy and repetition rate.

Fig. 3
Fig. 3

Interferometry setup. The CW diode probe laser counter-propagates with respect to the pump beam direction, passes through the pump focusing lens, and enters the folded wavefront interferometer.

Fig. 4
Fig. 4

(a) Gas average number density profiles vs. probe delay with respect to interaction of a 800 nm, 0.72 mJ, 40 fs pulse focused at f/65 into air at 1 atm. The inset shows electron density measured with spectral interferometry [11, 12]. (b) Lineouts of the air density profiles of Fig. 4(a). The blue curve is the measurement; the red curve is a Gaussian fit. The spatial resolution of the interferometric images is 10 µm. Density was extracted from phase shift maps using the linear polarizabilities of N2 and O2, βN2 = 1.76 × 10−24 cm3 and βO2 = 1.60 × 10−24 cm3 [14].

Fig. 5
Fig. 5

(a) Number density profiles vs. probe delay with respect to interaction of a 800 nm, 0.72 mJ, 40 fs pulse focused at f/65 into N2 at 1 atm. (b) Lineouts of the N2 density profiles of Fig. 5(a). The blue curve is the measurement; the red curve is a Gaussian fit. The spatial resolution of the interferometric images is 10 µm. Density was extracted from phase shift maps using the linear polarizability of N2, βN2 = 1.76 × 10−24 cm3 [14].

Fig. 6
Fig. 6

Hydrodynamic simulation of the early phase of gas evolution of 1 atm N2. Initial conditions are Ne = 1.5 × 1016 cm−3 and kBTe = 5 eV. The density profile becomes quasi-stationary by ~2 μs.

Fig. 7
Fig. 7

(a) Simulated evolution of the gas density hole at later times. (b) Hole FWHM d1/2 vs. time. The red curve is a fit to d 1/2 = ( R 0 2 +4αt ) 1/2 , indicating that the long time evolution of the gas is thermal diffusion dominated.

Fig. 8
Fig. 8

Log-log plot of measured FWHM of density hole vs. time for our range of gases and conditions. The good fit to lines of slope ½ verifies that the long time gas evolution is dominated by thermal diffusion.

Fig. 9
Fig. 9

(a) Density hole profiles in 1 atm air vs. probe delay for pump pulse repetition rate of 1 kHz. (b) Central lineouts of profiles in Fig. 9(a). Here, the associated refractive index shift Δn is shown.

Tables (1)

Tables Icon

Table 1 Thermal Conductivities Extracted from Fits in Fig. 8 and Comparison to Literature Values

Metrics