Abstract

A plastic optical touch panel applicable for large-scale flexible display is demonstrated based on a vertical directional coupling between arrayed channel waveguides and a flexible planar waveguide. When a contact force is applied to the surface, the flexible planar waveguide is bent toward the channel waveguide, and then, the guided mode in the channel waveguide is coupled into the flexible planar waveguide, causing an output power drop. An index-matching liquid is used to fill the gap between the channel and the flexible planar waveguide in order to enhance the transparency of the waveguide touch panel. By applying a force of 1.0 N, the output intensity is decreased by 17 dB, which is sufficiently large for producing a contact signal.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
    [CrossRef] [PubMed]
  2. S. J. Nichols, “New interfaces at the touch of a fingertip,” IEEE Computer40(8), 12–15 (2007).
    [CrossRef]
  3. P. Lei and A. Wong, “The multiple-touch user interface revolution,” IT Prof.11(1), 42–49 (2009).
    [CrossRef]
  4. J. Schoning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook, M. Lochtefeld, N. Motamedi, L. Muller, P. Olivier, T. Roth, and U. V. Zadow, “Multi-touch surfaces: a technical guide,” Technical report TUM-10833, University of Munich (2008).
  5. J. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” 18th Annual ACM Symposium on User Interface Software and Technology (ACM, seattle, Washington, USA, 2005).
  6. O. Wassvik, T. Christiansson, T. C. Bartle, and M. P. Wallander, “Planar scatter detection, a new method for optical touch screens,” Symposium Digest of Technical Papers (Wiley, 2011), pp.726–728.
  7. B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
    [CrossRef]
  8. L. M. Ng, “Infrared retroreflecting device used for a high-aspect-ratio optical touch panel, the method of manufacturing the same and a high-aspect-ratio touch panel using such device,” US Patent Application 20120097854, April 26, 2012.
  9. T. Chang, L. Alto, A. Grzegorek, S. Jose, C. Zhang, Cupertino, and J. Canfield, “Optical touch panel,” US Patent Application 20100295821, November 25, 2010.
  10. K.-H. Yoon, S.-H. Oh, K.-S. Kim, O.-K. Kwon, D.-K. Oh, Y.-O. Noh, and H.-J. Lee, “2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector,” Opt. Express18(6), 5556–5561 (2010).
    [CrossRef] [PubMed]
  11. J.-W. Kim, N.-S. Son, J.-H. Jang, K.-J. Kim, and M.-C. Oh, “Ultra-low inter-channel crosstalk in array waveguide device incorporating self-assembled microsphere diffraction layer,” Opt. Express19(21), 20904–20909 (2011).
    [CrossRef] [PubMed]
  12. H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
    [CrossRef]
  13. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express18(8), 8392–8399 (2010).
    [CrossRef] [PubMed]
  14. M.-C. Oh, J.-W. Kim, K.-J. Kim, and S.-S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett.21(8), 501–503 (2009).
    [CrossRef]
  15. Y.-S. Kim, S.-T. Park, S.-K. Park, S.-R. Yun, K.-U. Kyung, and K. Sun, “Transparent and flexible force sensor array based on optical waveguide,” Opt. Express20(13), 14486–14493 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2010 (2)

2009 (3)

M.-C. Oh, J.-W. Kim, K.-J. Kim, and S.-S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett.21(8), 501–503 (2009).
[CrossRef]

P. Lei and A. Wong, “The multiple-touch user interface revolution,” IT Prof.11(1), 42–49 (2009).
[CrossRef]

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

2007 (1)

S. J. Nichols, “New interfaces at the touch of a fingertip,” IEEE Computer40(8), 12–15 (2007).
[CrossRef]

2006 (1)

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

2003 (1)

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Ahn, S.-W.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Esenther, A.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Everitt, K.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Fetterman, H. R.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Forlines, C.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Hancock, M.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Hong, I.-S.

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

Jang, J.-H.

Kim, J.-W.

Kim, K.-J.

Kim, K.-S.

Kim, Y.-S.

Kwon, O.-K.

Kyung, K.-U.

Lee, B.-J.

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

Lee, H.-J.

Lee, S.-S.

M.-C. Oh, J.-W. Kim, K.-J. Kim, and S.-S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett.21(8), 501–503 (2009).
[CrossRef]

Lei, P.

P. Lei and A. Wong, “The multiple-touch user interface revolution,” IT Prof.11(1), 42–49 (2009).
[CrossRef]

Morris, M. R.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Nichols, S. J.

S. J. Nichols, “New interfaces at the touch of a fingertip,” IEEE Computer40(8), 12–15 (2007).
[CrossRef]

Noh, Y.-O.

Oh, D.-K.

Oh, M.-C.

J.-W. Kim, N.-S. Son, J.-H. Jang, K.-J. Kim, and M.-C. Oh, “Ultra-low inter-channel crosstalk in array waveguide device incorporating self-assembled microsphere diffraction layer,” Opt. Express19(21), 20904–20909 (2011).
[CrossRef] [PubMed]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express18(8), 8392–8399 (2010).
[CrossRef] [PubMed]

M.-C. Oh, J.-W. Kim, K.-J. Kim, and S.-S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett.21(8), 501–503 (2009).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Oh, S.-H.

Park, S.

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

Park, S.-K.

Park, S.-T.

Ryall, K.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Shen, C.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Son, N.-S.

Song, H.-C.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Steier, W.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Sun, K.

Tse, E.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Uhm, Y.-S.

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

Vernier, F. D.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Wigdor, D.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Wong, A.

P. Lei and A. Wong, “The multiple-touch user interface revolution,” IT Prof.11(1), 42–49 (2009).
[CrossRef]

Wu, M.

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

Yoon, K.-H.

Yun, S.-R.

Zhang, C.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003).
[CrossRef]

IEEE Comput. Graph. Appl. (1)

C. Shen, K. Ryall, C. Forlines, A. Esenther, F. D. Vernier, K. Everitt, M. Wu, D. Wigdor, M. R. Morris, M. Hancock, and E. Tse, “Informing the design of direct-touch tabletops,” IEEE Comput. Graph. Appl.26(5), 36–46 (2006).
[CrossRef] [PubMed]

IEEE Computer (1)

S. J. Nichols, “New interfaces at the touch of a fingertip,” IEEE Computer40(8), 12–15 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M.-C. Oh, J.-W. Kim, K.-J. Kim, and S.-S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett.21(8), 501–503 (2009).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

B.-J. Lee, I.-S. Hong, Y.-S. Uhm, and S. Park, “The multi-touch system with high applicability using tri-axial coordinate infrared LEDs,” IEEE Trans. Consum. Electron.55(4), 2416–2424 (2009).
[CrossRef]

IT Prof. (1)

P. Lei and A. Wong, “The multiple-touch user interface revolution,” IT Prof.11(1), 42–49 (2009).
[CrossRef]

Opt. Express (4)

Other (5)

L. M. Ng, “Infrared retroreflecting device used for a high-aspect-ratio optical touch panel, the method of manufacturing the same and a high-aspect-ratio touch panel using such device,” US Patent Application 20120097854, April 26, 2012.

T. Chang, L. Alto, A. Grzegorek, S. Jose, C. Zhang, Cupertino, and J. Canfield, “Optical touch panel,” US Patent Application 20100295821, November 25, 2010.

J. Schoning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook, M. Lochtefeld, N. Motamedi, L. Muller, P. Olivier, T. Roth, and U. V. Zadow, “Multi-touch surfaces: a technical guide,” Technical report TUM-10833, University of Munich (2008).

J. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” 18th Annual ACM Symposium on User Interface Software and Technology (ACM, seattle, Washington, USA, 2005).

O. Wassvik, T. Christiansson, T. C. Bartle, and M. P. Wallander, “Planar scatter detection, a new method for optical touch screens,” Symposium Digest of Technical Papers (Wiley, 2011), pp.726–728.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed optical touch panel consisting of channel waveguides in a 4 × 4 matrix configuration and flexible planar waveguides covering the channel waveguides with an initial gap maintained by the spacer pattern. When pressure is applied, the planar waveguide is bent to touch the channel waveguide and cause evanescent field directional coupling.

Fig. 2
Fig. 2

Design results based on BPM simulation: (a) waveguide structure and design parameters defined, (b) intensity profiles exhibiting the directional coupling into the planar waveguide for a gap distance of 0, and d of 6 μm, and (c) output power remaining on the channel waveguide as a function of gap distance for various channel waveguide thicknesses.

Fig. 3
Fig. 3

Fabrication procedure of the plastic optical touch panel completed by attaching the two parts: a glass substrate with a channel waveguide and a planar waveguide coated on a flexible plastic substrate.

Fig. 4
Fig. 4

Transparency of optical touch panel (a) before liquid insertion with the waveguide pattern visible and (b) after the index-matching liquid is injected, and the waveguide pattern becomes invisible; for a different viewing angle, the transparency (c) when water is filling up the gap, and (d) when the index-matching liquid has filled the gap and no waveguide pattern is visible. The distance between the waveguides is 0.5 mm, and the size of glass wafer is 3 x 3 cm2.

Fig. 5
Fig. 5

Waveguide-mode pictures of (a) initial guided light, and (b)–(e) show the output power decreasing when a pressure is applied on a corresponding waveguide. The distance between waveguides at the output is 250 μm.

Fig. 6
Fig. 6

Output power variation measured for (b) applied force on P1, as shown in (a); (c) the instantaneous output power measured when P1 was pressed with increasing force in two steps; and (d) the power variation when P1 and P2 were pressed step-by-step.

Metrics