Abstract

We report the fabrication of a planar waveguide in polycrystalline zinc sulfide by 6.0 MeV C ions implantation with a fluence of 5 × 1014 ion/cm2 at room temperature. The near-field light intensity profiles in the visible and near-infrared bands are measured by the end-face coupling method with different laser sources. Investigation of the Raman spectra demonstrates that the microstructure of the polycrystalline zinc sulfide has no significant change after C ion implantation. The absorption spectra show that the implantation processes have no influence on the visible and infrared bands.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Willingham and J. Pappis, “Polycrystalline zine sulphide and zinc selenide articles having improved optical quality,” U. S. Patent: 4944900 (1990).
  2. A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
    [CrossRef]
  3. F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
    [CrossRef]
  4. Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).
  5. J. A. Savage, “New far infra-red window materials-from zinc sulphide through calcium lanthanum sulphide to diamond,” Glass Technol.32, 35–39 (1991).
  6. E. M. Gavrishchuk and Ė. V. Yashina, “Zinc sulfide and zinc selenide optical elements for IR engineering,” J. Opt. Technol.71(12), 822–827 (2004).
    [CrossRef]
  7. S. P. Wang, “Zinc sulfide crystals for optical components,” United States Patent, US 8071466 B1 (2011).
  8. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beam for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
    [CrossRef]
  9. J. H. Zhao, T. Liu, S. S. Guo, J. Guan, and X. L. Wang, “Optical properties of planar waveguides on ZnWO₄ formed by carbon and helium ion implantation and effects of annealing,” Opt. Express18(18), 18989–18996 (2010).
    [CrossRef] [PubMed]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
    [CrossRef]
  11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
    [CrossRef]
  12. W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
    [CrossRef]
  13. S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
    [CrossRef]
  14. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009).
    [CrossRef]
  15. J. F. Ziegler, Computer Code SRIM, Http://www.srim.org .
  16. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976).
    [CrossRef] [PubMed]
  17. Q. Huang, P. Liu, T. Liu, L. Zhang, and X. L. Wang, “Waveguide structures for the visible and near-infrared wavelength regions in near-stoichiometric lithium niobate formed by swift argon-ion irradiation,” Opt. Express20(4), 4213–4218 (2012).
    [CrossRef] [PubMed]
  18. D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
    [CrossRef]
  19. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  20. B. Douglas, Leviton and Bradley J. Frey, “Temperature-Dependent Refractive Index of Cleartran (Registered Trademark) ZnS,” NASA Goddard Space Flight Center (2012).
  21. W. C. Lai, S. Chakravarty, X. L. Wang, C. Y. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett.36(6), 984–986 (2011).
    [CrossRef] [PubMed]
  22. F. Göde, “Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films,” Physica B406(9), 1653–1659 (2011).
    [CrossRef]

2012 (2)

2011 (3)

W. C. Lai, S. Chakravarty, X. L. Wang, C. Y. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett.36(6), 984–986 (2011).
[CrossRef] [PubMed]

F. Göde, “Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films,” Physica B406(9), 1653–1659 (2011).
[CrossRef]

S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
[CrossRef]

2010 (1)

2009 (2)

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009).
[CrossRef]

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

2008 (1)

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

2007 (2)

F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

2004 (1)

2002 (2)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

1993 (1)

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

1991 (1)

J. A. Savage, “New far infra-red window materials-from zinc sulphide through calcium lanthanum sulphide to diamond,” Glass Technol.32, 35–39 (1991).

1976 (1)

Ahmadpoor, H.

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

Araujo, L. L.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Aval, G. M.

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Buchal, Ch.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

Byrne, A. P.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Chai, Y. C.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Chakravarty, S.

Chen, F.

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beam for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Chen, R. T.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Dalimin, M. N.

S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
[CrossRef]

Dong, Y. P.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Fang, Z. Y.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Fleuster, M.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

Fluck, D.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

Gavrishchuk, E. M.

Giulian, R.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Göde, F.

F. Göde, “Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films,” Physica B406(9), 1653–1659 (2011).
[CrossRef]

F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
[CrossRef]

Goudarzi, A.

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

Guan, J.

Gümüs, C.

F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
[CrossRef]

Günter, P.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

Guo, S. S.

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Hao, Y. L.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Heidrich, P. F.

Huang, Q.

Hussain, Z. S.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Jaque, D.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009).
[CrossRef]

Jundt, D. H.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

Kluth, P.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Lai, W. C.

Lin, C. Y.

Liu, P.

Liu, T.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Ridgway, M. C.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Rutt, H. N.

S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

Sahraei, R.

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

Salleh, S.

S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
[CrossRef]

Savage, J. A.

J. A. Savage, “New far infra-red window materials-from zinc sulphide through calcium lanthanum sulphide to diamond,” Glass Technol.32, 35–39 (1991).

Schnohr, C. S.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Sprouster, D. J.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Tian, H. C.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Wang, H. M.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Wang, X. L.

Wesch, W.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

White, J. M.

Xiao, H. T.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Yan, Z. W.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Yang, Y. Y.

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

Yashina, E. V.

Zhang, L.

Zhao, J. H.

Zor, M.

F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
[CrossRef]

Adv. Mater. Res. (1)

S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009).
[CrossRef]

Glass Technol. (1)

J. A. Savage, “New far infra-red window materials-from zinc sulphide through calcium lanthanum sulphide to diamond,” Glass Technol.32, 35–39 (1991).

J. Appl. Phys. (2)

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002).
[CrossRef]

J. Cryst. Growth (2)

F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007).
[CrossRef]

Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).

J. Opt. Technol. (1)

J. Phys. D Appl. Phys. (1)

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009).
[CrossRef]

Laser Photonics Rev. (1)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beam for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Physica B (1)

F. Göde, “Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films,” Physica B406(9), 1653–1659 (2011).
[CrossRef]

Thin Solid Films (1)

A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008).
[CrossRef]

Other (5)

J. F. Ziegler, Computer Code SRIM, Http://www.srim.org .

C. B. Willingham and J. Pappis, “Polycrystalline zine sulphide and zinc selenide articles having improved optical quality,” U. S. Patent: 4944900 (1990).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

B. Douglas, Leviton and Bradley J. Frey, “Temperature-Dependent Refractive Index of Cleartran (Registered Trademark) ZnS,” NASA Goddard Space Flight Center (2012).

S. P. Wang, “Zinc sulfide crystals for optical components,” United States Patent, US 8071466 B1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic of the experimental setup for end-face coupling in the near-infrared region with a tunable diode laser.

Fig. 2
Fig. 2

(a) A photograph, collected by a metallographic microscope with 500 × magnification using reflected polarized light, of the C ion-implanted polycrystalline ZnS. (b) The nuclear and electronic stopping powers (Sn and Se) as a function of the penetration depth for 6.0 MeV C ions in the ZnS material based on the SRIM 2010 code.

Fig. 3
Fig. 3

(a) The reconstructed refractive index profile from the TE mode at 633 nm. The near field light intensity profile of the TE0 mode at 633 nm collected by the CCD camera (b) and simulated by the FD-BPM method (c).

Fig. 4
Fig. 4

Reconstructed refractive index profile from TE mode at 1300 nm (a) and 1539 nm (b). The near field light intensity profile in the near-infrared band of TE0 mode collected by CCD camera at 1300 nm (c), 1539 nm (d), and calculated by FD-BPM from the estimated refractive profile at 1539 nm (e).

Fig. 5
Fig. 5

The absorption spectra of the polycrystalline ZnS before and after C ion implantation.

Fig. 6
Fig. 6

The micro-Raman spectra of the bulk and the waveguide layer in polycrystalline ZnS.

Tables (1)

Tables Icon

Table 1 Experimental and Calculated Values of the Effective Indices of the TE Modes at 633 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ,T )1= i=1 3 S i (T) λ 2 λ 2 λ i 2
S i (T)= j=0 4 S ij T j , λ i (T)= j=0 4 λ ij T j .

Metrics