Abstract

A novel phase measurement method composed of the rising-edge locked signal processing and the digital frequency mixing is proposed for laser heterodyne interferometer. The rising-edge locked signal processing, which employs a high frequency clock signal to lock the rising-edges of the reference and measurement signals, not only can improve the steepness of the rising-edge, but also can eliminate the error counting caused by multi-rising-edge phenomenon in fringe counting. The digital frequency mixing is realized by mixing the digital interference signal with a digital base signal that is different from conventional frequency mixing with analogue signals. These signal processing can improve the measurement accuracy and enhance anti-interference and measurement stability. The principle and implementation of the method are described in detail. An experimental setup was constructed and a series of experiments verified the feasibility of the method in large displacement measurement with high speed and nanometer resolution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Schuldt, M. Gohlke, D. Weise, U. Johann, and C. Braxmaier, “A high-precision dilatometer based on sub-nm heterodyne interferometry,” in International Symposium on Optomechatronic Technologies (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 146–151.
  2. S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
    [CrossRef] [PubMed]
  3. K. H. Chen, W. Y. Chang, and J. H. Chen, “Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry,” Opt. Express17(16), 14143–14149 (2009).
    [CrossRef] [PubMed]
  4. B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
    [CrossRef] [PubMed]
  5. G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express17(2), 828–837 (2009).
    [CrossRef] [PubMed]
  6. S. F. Wang, W. Lai, J. S. Chiu, R. H. Yeh, H. C. Tseng, and W. C. Chen, “Method for measuring the twist angle of an optically compensation bend by using the heterodyne interferometry,” in International Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 296–299.
  7. N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
    [CrossRef]
  8. M. S. Kim and S. W. Kim, “Two-Longitudinal-Mode He-Ne laser for Heterodyne Interferometers to Measure Displacement,” Appl. Opt.41(28), 5938–5942 (2002).
    [CrossRef] [PubMed]
  9. S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
    [CrossRef]
  10. P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
    [CrossRef]
  11. T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
    [CrossRef]
  12. N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
    [CrossRef]
  13. M.-S. Kim and S.-W. Kim, “Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry,” Meas. Sci. Technol.15(11), 2341–2348 (2004).
    [CrossRef]

2012 (1)

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

2009 (4)

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express17(2), 828–837 (2009).
[CrossRef] [PubMed]

K. H. Chen, W. Y. Chang, and J. H. Chen, “Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry,” Opt. Express17(16), 14143–14149 (2009).
[CrossRef] [PubMed]

2008 (1)

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

2005 (1)

S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
[CrossRef]

2004 (1)

M.-S. Kim and S.-W. Kim, “Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry,” Meas. Sci. Technol.15(11), 2341–2348 (2004).
[CrossRef]

2002 (1)

2000 (1)

N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
[CrossRef]

1993 (1)

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Araki, T.

S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
[CrossRef]

Chang, W. Y.

Chen, B. Y.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Chen, J. H.

Chen, K. H.

Chua, S.

de Vine, G.

Eom, C. I.

N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
[CrossRef]

Eom, T. B.

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

Feng, Q. B.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Flügge, J.

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

Fridberger, A.

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

Hetrick, P. S.

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Jacob, S.

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

Johansson, C.

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

Kang, C. S.

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

Kim, J. A.

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

Kim, J. W.

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

Kim, M. S.

Kim, M.-S.

M.-S. Kim and S.-W. Kim, “Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry,” Meas. Sci. Technol.15(11), 2341–2348 (2004).
[CrossRef]

Kim, S. W.

M. S. Kim and S. W. Kim, “Two-Longitudinal-Mode He-Ne laser for Heterodyne Interferometers to Measure Displacement,” Appl. Opt.41(28), 5938–5942 (2002).
[CrossRef] [PubMed]

N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
[CrossRef]

Kim, S.-W.

M.-S. Kim and S.-W. Kim, “Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry,” Meas. Sci. Technol.15(11), 2341–2348 (2004).
[CrossRef]

Köchert, P.

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

Köning, R.

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

Kramar, J. A.

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Lam, T. T.

Li, C. R.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Manske, E.

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

McClelland, D. E.

Oldham, N. M.

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Park, B. C.

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

Rabeling, D. S.

Shaddock, D. A.

Slagmolen, B. J. J.

Tang, W. H.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Teague, E. C.

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Ulfendahl, M.

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

Weichert, C.

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

Wuchenich, D. M.

Yan, L. P.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Yim, N. B.

N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
[CrossRef]

Yokoyama, S.

S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
[CrossRef]

Yokoyama, T.

S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
[CrossRef]

Zhang, E. Z.

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Neurosci. Methods (1)

S. Jacob, C. Johansson, M. Ulfendahl, and A. Fridberger, “A digital heterodyne laser interferometer for studying cochlear mechanics,” J. Neurosci. Methods179(2), 271–277 (2009).
[CrossRef] [PubMed]

Meas. Sci. Technol. (5)

S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol.16(9), 1841–1847 (2005).
[CrossRef]

P. Köchert, J. Flügge, C. Weichert, R. Köning, and E. Manske, “Phase measurement of various commercial heterodyne He–Ne-laser interferometers with stability in the picometer regime,” Meas. Sci. Technol.23(7), 074005 (2012).
[CrossRef]

T. B. Eom, J. A. Kim, C. S. Kang, B. C. Park, and J. W. Kim, “A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer,” Meas. Sci. Technol.19(7), 075302 (2008).
[CrossRef]

N. B. Yim, C. I. Eom, and S. W. Kim, “Dual mode phase measurement for optical heterodyne interferometry,” Meas. Sci. Technol.11(8), 1131–1137 (2000).
[CrossRef]

M.-S. Kim and S.-W. Kim, “Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry,” Meas. Sci. Technol.15(11), 2341–2348 (2004).
[CrossRef]

Opt. Express (2)

Precis. Eng. (1)

N. M. Oldham, J. A. Kramar, P. S. Hetrick, and E. C. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng.15(3), 173–179 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum.80(11), 115113 (2009).
[CrossRef] [PubMed]

Other (2)

T. Schuldt, M. Gohlke, D. Weise, U. Johann, and C. Braxmaier, “A high-precision dilatometer based on sub-nm heterodyne interferometry,” in International Symposium on Optomechatronic Technologies (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 146–151.

S. F. Wang, W. Lai, J. S. Chiu, R. H. Yeh, H. C. Tseng, and W. C. Chen, “Method for measuring the twist angle of an optically compensation bend by using the heterodyne interferometry,” in International Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 296–299.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of laser heterodyne interferometer displacement measurement system.

Fig. 2
Fig. 2

The block diagram of the phase measurement processing.

Fig. 3
Fig. 3

Schematic of rising-edge locked signal processing

Fig. 4
Fig. 4

Schematic of the high-speed signal processing module.

Fig. 5
Fig. 5

Schematic of the high-resolution signal processing module

Fig. 6
Fig. 6

Schematic of the combination of integer and fraction fringe counting

Fig. 7
Fig. 7

Resolution test result

Fig. 8
Fig. 8

The experimental setup

Fig. 9
Fig. 9

Stability experimental results

Fig. 10
Fig. 10

Experimental results of combination of integer and fraction fringe counting

Fig. 11
Fig. 11

Experimental result of millimeter displacement measurement.

Fig. 12
Fig. 12

Experimental result of micrometer displacement measurement.

Fig. 13
Fig. 13

Experimental result of nanometer displacement measurement.

Fig. 14
Fig. 14

Experimental result of repeated displacement measurement.

Tables (4)

Tables Icon

Table 1 Speed test result

Tables Icon

Table 2 Experimental result of millimeter displacement measurement

Tables Icon

Table 3 Experimental result of micrometer displacement measurement

Tables Icon

Table 4 Experimental result of nanometer displacement measurement

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ν(t)= Δ f 2 (t) λ 2 2n
L(t)= λ 2 2n 0 t Δ f 2 dt =(N+ε) λ 2 2n
f(t)= 2E π n=1 1 n sin( nπ 2 )cos(n2πft) = 2E π [cos(2πft) 1 3 cos(32πft)+ 1 5 cos(52πft) 1 7 cos(72πft)+...]
f (t)= 2E π n=1 1 n sin( nπ 2 )cos[n*2π(f10k)t] = 2E π { cos[2π(f10k)t] 1 3 cos[3*2π(f10k)t]+ 1 5 cos[5*2π(f10k)t] 1 7 cos[7*2π(f10k)t]+... }
f (t)=f(t) f (t) = F - [....]+ F + [....] =F [ f(10k),f(2f+10k),f(4f+10k),f(6f+10k),..., f(2f+30k),f(30k),f(2f+30k),f(4f+30k),f(6f+30k),..., f(4f+50k),f(2f+50k),f(50k), f(2f+50k),f(4f+50k),...]+ F + [....]
L=ΔN λ 2n =[ N Ref N Mea +(C1C2) N Max ] λ 2n
Δφ= n Phase n Ref 360
v(t)= λ 2n ( f CLK n Mea f CLK n Ref )
φ=N×360°+Δφ
φ=(N1)×360°+Δφ

Metrics