Abstract

A complete photonic wire molecular biosensor microarray chip architecture and supporting instrumentation is described. Chip layouts with 16 and 128 independent sensors have been fabricated and tested, where each sensor can provide an independent molecular binding curve. Each sensor is 50 μm in diameter, and consists of a millimeter long silicon photonic wire waveguide folded into a spiral ring resonator. An array of 128 sensors occupies a 2 × 2 mm2 area on a 6 × 9 mm2 chip. Microfluidic sample delivery channels are fabricated monolithically on the chip. The size and layout of the sensor array is fully compatible with commercial spotting tools designed to independently functionalize fluorescence based biochips. The sensor chips are interrogated using an instrument that delivers sample fluid to the chip and is capable of acquiring up to 128 optical sensor outputs simultaneously and in real time. Coupling light from the sensor chip is accomplished through arrays of sub-wavelength surface grating couplers, and the signals are collected by a fixed two-dimensional detector array. The chip and instrument are designed so that connection of the fluid delivery system and optical alignment are automated, and can be completed in a few seconds with no active user input. This microarray system is used to demonstrate a multiplexed assay for serotyping E. coli bacteria using serospecific polyclonal antibody probe molecules.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
    [CrossRef]
  2. S. Janz, A. Densmore, D.-X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delage, R. McKinnon, P. Cheben, and B. Lamontagne, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Photonic and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 229–264.
  3. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
    [CrossRef] [PubMed]
  4. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
    [CrossRef] [PubMed]
  5. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
    [CrossRef] [PubMed]
  6. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
    [CrossRef] [PubMed]
  7. R. Halir, P. Cheben, S. Janz, D. X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009).
    [CrossRef] [PubMed]
  8. R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
    [CrossRef]
  9. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
  10. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
    [CrossRef]
  11. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron.6(3), 215–225 (1991).
    [CrossRef]
  12. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
    [CrossRef] [PubMed]
  13. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol.16(4), 583–592 (1998).
    [CrossRef]
  14. H. Sohlström and M. Öberg, “Refractive index measurement using integrated ring resonators,” Proceedings of the Eighth European Conference on Integrated Optics, 322–325 (1997).
  15. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
    [CrossRef]
  16. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  17. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–323 (2000).
    [CrossRef]
  18. A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
    [CrossRef]
  19. D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
    [CrossRef] [PubMed]
  20. P. Cheben, S. Janz, B. Lamontagne, and D.-X. Xu, ‘A method of optical off-chip interconnects in multichannel planar waveguide devices,” US Patent 7,376,308 B2 (2008).
  21. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
    [CrossRef] [PubMed]
  22. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
    [CrossRef] [PubMed]
  23. K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).
  24. S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
    [CrossRef]
  25. A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
    [CrossRef]
  26. M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
    [CrossRef] [PubMed]
  27. M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
    [CrossRef] [PubMed]

2012 (1)

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

2010 (5)

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (2)

2007 (1)

2006 (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

2005 (3)

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

2003 (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–323 (2000).
[CrossRef]

1998 (1)

1991 (1)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron.6(3), 215–225 (1991).
[CrossRef]

1989 (2)

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
[CrossRef]

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
[CrossRef]

Baets, R.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Bailey, R. C.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Bartolozzi, I.

Bedard, D.

Bienstman, P.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Brown, B. J.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Caes, T.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

Cheben, P.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, S. Janz, D. X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Chena, S.

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Coakley, W. T.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

De Koninck, Y.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

De Vos, K.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Delâge, A.

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Densmore, A.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Fabricius, N.

Fédeli, J.-M.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

Fédéli, J.-M.

Fielden, P. R.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

Fournier, M.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

García, J.

Girones, J.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

Goddard, N. J.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Gunn, L. C.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

Halir, R.

Hawkes, J. J.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

Hollenbach, U.

Homola, J.

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Ingenhoff, J.

Iqbal, M.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Janz, S.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, S. Janz, D. X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Jiang, S.

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Lamontagne, B.

Lapointe, J.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Li, Y.

Liu, Q. Y.

Lopinski, G.

Luchansky, M. S.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Luff, B. J.

Lukosz, W.

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron.6(3), 215–225 (1991).
[CrossRef]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
[CrossRef]

Ma, R.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

Martin, T. A.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

McDonnell, M. B.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

McKinnon, R.

McKinnon, R. W.

Messaoudène, S.

Mischki, T.

Mohr, S.

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Molina-Fernández, I.

Molina-Fernández, Í.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

Ortega-Moñux, A.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

Piehler, J.

Poitras, D.

Popelka, S.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

Post, E.

Schacht, E.

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Schmid, J. H.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Sinclair, W.

Storey, C.

Tao, Y.-T.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
[CrossRef]

Taylor, A. D.

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Tiefenthaler, K.

Treves Brown, B. J.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

Vachon, M.

Waldron, P.

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Wangüemert-Pérez, J. G.

Washburn, A. L.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Wasserman, S. R.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
[CrossRef]

Whitesides, G. M.

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
[CrossRef]

Wilkinson, J. S.

Xu, D. X.

Xu, D.-X.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express18(3), 1937–1945 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010).
[CrossRef] [PubMed]

A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol.27(9), 1172–1180 (2009).
[CrossRef]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–323 (2000).
[CrossRef]

Yua, Q.

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Zavargo-Peche, L.

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

Zhang, D.

Zourob, M.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Treves Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force,” Anal. Chem.77(19), 6163–6168 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

Biosens. Bioelectron. (2)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron.6(3), 215–225 (1991).
[CrossRef]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–323 (2000).
[CrossRef]

IEEE Photon J. (1)

K. De Vos, J. Girones, T. Caes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon J.1(4), 224–235 (2009).

IEEE Photon. Technol. Lett. (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria,” Lab Chip5(12), 1360–1365 (2005).
[CrossRef] [PubMed]

Langmuir (1)

S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir5(4), 1074–1087 (1989).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

R. Halir, L. Zavargo-Peche, D.-X. Xu, P. Cheben, R. Ma, J. H. Schmid, S. Janz, A. Densmore, A. Ortega-Moñux, Í. Molina-Fernández, M. Fournier, and J.-M. Fédeli, “Single etch grating couplers for mass fabrication with DUV lithography,” Opt. Quantum Electron.44(12-13), 521–526 (2012), doi:.
[CrossRef]

Sens. Actuators B Chem. (1)

A. D. Taylor, Q. Yua, S. Chena, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Other (4)

J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).

S. Janz, A. Densmore, D.-X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delage, R. McKinnon, P. Cheben, and B. Lamontagne, “Silicon photonic wire waveguide sensors,” in Advanced Photonic Structures for Photonic and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 229–264.

P. Cheben, S. Janz, B. Lamontagne, and D.-X. Xu, ‘A method of optical off-chip interconnects in multichannel planar waveguide devices,” US Patent 7,376,308 B2 (2008).

H. Sohlström and M. Öberg, “Refractive index measurement using integrated ring resonators,” Proceedings of the Eighth European Conference on Integrated Optics, 322–325 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A Nomarski microscope image of a 128 sensor PWEF microarray chip, showing layout of 128 sensor array, microfluidic channels and input and output couplers.

Fig. 2
Fig. 2

(a) An optical microscope image of a single sensor element showing the circular window in the 2μm-thick SU-8 protective layer, and the SU-8 microfluidic channel. (b) A schematic cross-section of the sensor and microfluidic channel corresponding to the plane cut across the sensor indicated by the dashed line in (a).

Fig. 3
Fig. 3

(a) Scanning electron microscope image of a subwavelength patterned grating coupler and (b) a magnified view of the area indicated by the rectangle. (c) An optical microscope view of the output coupler array on a 128 sensor chip showing the 15 × 15 μm2 coupling gratings (small squares) bracketed by 120 μm long adiabatic tapers that connect the 0.45 nm wide photonic wire waveguides to the 15 μm square grating couplers. Each waveguide and grating coupler carries light from one element of the sensor array.

Fig. 4
Fig. 4

A schematic diagram of the PWEF reader instrument, and a photograph of the instrument with the cover removed. The instrument enclosure occupies a bench top area of approximately 60 cm by 45 cm, and contains fluid pumps, valves, optics and automated translation stages that deliver light and sample liquids to the PWEF chip.

Fig. 5
Fig. 5

A schematic diagram showing the sensor chip, microfluidic block, and input and output lenses within the reader instrument. Dimensions shown are not to scale. The output beams are focused onto an InGaAs detector array to the right (not shown).

Fig. 6
Fig. 6

Two ring resonator sensor spectra as captured by the reader instrument during binding of bacteria antigen isolates to the sensor surface. Each data point corresponds to the intensity captured by one camera exposure. The two spectra were taken 35 minutes apart during the capture of E. coli antigen to the sensor surface as described in section 4. Only the resonance minima are visible. To improve accuracy in measuring resonance wavelengths, the coupled optical power is adjusted to improve signal resolution near the resonance minima, while intensity between resonances is allowed to saturate the camera pixels.

Fig. 7
Fig. 7

(a) Streptavidin protein capture binding curves for a 16 sensor PWEF microarray chip as measured in the reader instrument described here. The shaded area indicates the time interval during which the sensors were exposed to streptavidin-containing PBS solution. Before and after streptavidin exposure the liquid was pure PBS solution. The trace at the bottom is the output of the reference sensor that records temperature drifts. (b) A superposition of 128 sensor response curves as the refractive index of the fluid flowing through a 128 sensor array is increased in steps of Δn = 0.0009 by increasing sucrose concentration in steps of 0.5 Bx.

Fig. 8
Fig. 8

Molecular binding curves from a 16 sensor PWEF array functionalized with antibodies to E. coli serotypes O121, O145, O55, O103, and O157, as indicated in the upper left of each panel. The colored bands delineate the time intervals during which the array was exposed to solutions containing O55 bacteria or various antibodies as indicated in the legend at the top. The bacteria concentration is 108 CFU/ml. During the intervals between colored bands pure PBS solution was flowing through the chip. The Sensor S0 (lower right) was isolated from the liquid by a 2-μm-thick SU-8 layer and used to compensate temperature-induced drifts.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δϕ= δ N eff L.
D= k B T/6πνr

Metrics