Abstract

A simple all-optical power equalization scheme based on a single two-section reflective semiconductor optical amplifier (RSOA) is presented. Double optical path and non-uniform injection current density in the two sections easily saturate the RSOA and suppress pattern effect, thereby significantly reducing packet-to-packet power fluctuation while maintaining better signal quality. The mechanism of the two-section RSOA-based power equalizer is investigated and it is indicated that the two-section RSOA biased at proper current density functions as three cascaded SOAs, including a preamplifying SOA, a gain-saturated SOA and a third SOA. The performance dependence on driven current and structural parameters is also studied.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zirngibl, “An optical power equalizer based on one Er-doped fiber amplifier,” IEEE Photon. Technol. Lett.4(4), 357–359 (1992).
    [CrossRef]
  2. D. Chiaroni, N. Le Sauze, T. Zami, and J.-Y. Emery, “Semiconductor optical amplifiers: a key technology to control the packet power variation,” in Proc. 27th Eur. Conf. on Opt. Comm. (Amsterdam, 2001), 3, 314–315.
  3. R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
    [CrossRef]
  4. N. Cheng, S.-H. Yen, J. Cho, Z. Xu, T. Yang, Y. Tang, and L. G. Kazovsky, “Long reach passive optical networks with adaptive power equalization using semiconductor optical amplifiers,” in Asia Communications and Photonics Conference and Exhibition, (Shanghai, 2009), FS4.
  5. L. Liu, C. Michie, A. E. Kelly, and I. Andonovic, “Packet equalization in PONs using adjustable gain-clamped semiconductor optical amplifiers (AGC-SOA),” in Photonics Global Conference, (Singapore, 2010), Tu.B6.4.
  6. S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
    [CrossRef]
  7. G. T. Kanellos, N. Pleros, D. Petrantonakis, P. Zakynthinos, H. Avramopoulos, G. Maxwell, and A. Poustie, “40 Gb/s 2R burst mode receiver with a single integrated SOA-MZI switch,” Opt. Express15(8), 5043–5049 (2007).
    [CrossRef] [PubMed]
  8. C. H. Chen, U. Koren, R. E. Behringer, M. Chien, B. I. Miller, and K. F. Dreyer, “Two section semiconductor optical amplifier as optical power equalizer with high output power,” in Proc. Conf. Optical Amplifier and Their Applications, 1998, paper MC3–1.
  9. L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
    [CrossRef]
  10. P. Tian, L. Huang, W. Hong, and D. Huang, “Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier,” Appl. Opt.49(26), 5005–5012 (2010).
    [CrossRef] [PubMed]
  11. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express14(1), 331–347 (2006).
    [CrossRef] [PubMed]
  12. A. E. Willner and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” J. Lightwave Technol.13(5), 771–781 (1995).
    [CrossRef]
  13. L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
    [CrossRef]
  14. R. Lennox, K. Carney, R. Maldonado-Basilio, S. Philippe, A. L. Bradley, and P. Landais, “Impact of bias current distribution on the noise figure and power saturation of a multicontact semiconductor optical amplifier,” Opt. Lett.36(13), 2521–2523 (2011).
    [CrossRef] [PubMed]
  15. J. Y. Emery, B. Lavigne, C. Porcheron, C. Janz, F. Dorgeuille, F. Pommereau, E. Gaborit, I. Guillemot-Neubauer, and M. Renaud, “Two-section semiconductor optical amplifier power equalizer with 8dBm output saturation power for 10Gbit/s applications,” in Conference on Optical Amplifiers and their Applications, Technical Digest Series (Optical Society of America, 1999), 30: 179–182.

2011 (1)

2010 (1)

2008 (1)

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

2003 (1)

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

1995 (2)

A. E. Willner and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” J. Lightwave Technol.13(5), 771–781 (1995).
[CrossRef]

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

1992 (1)

M. Zirngibl, “An optical power equalizer based on one Er-doped fiber amplifier,” IEEE Photon. Technol. Lett.4(4), 357–359 (1992).
[CrossRef]

Akatsu, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

André, P.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Avramopoulos, H.

Bradley, A. L.

Carney, K.

Fonseca, D.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Gurney, P. C. R.

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

Hong, W.

Huang, D.

P. Tian, L. Huang, W. Hong, and D. Huang, “Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier,” Appl. Opt.49(26), 5005–5012 (2010).
[CrossRef] [PubMed]

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

Huang, L.

P. Tian, L. Huang, W. Hong, and D. Huang, “Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier,” Appl. Opt.49(26), 5005–5012 (2010).
[CrossRef] [PubMed]

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

Ito, T.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

Kanellos, G. T.

Landais, P.

Lennox, R.

Liu, D.

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

Lowery, A. J.

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

Maldonado-Basilio, R.

Maxwell, G.

Meleiro, R.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Monteiro, P.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Mørk, J.

Nguyen, L. V. T.

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

Nielsen, M. L.

Novak, D.

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

Ohki, A.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

Pato, S. V.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Petrantonakis, D.

Philippe, S.

Pleros, N.

Poustie, A.

Sakaguchi, J.

Sato, R.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

Shibata, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

Shieh, W.

A. E. Willner and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” J. Lightwave Technol.13(5), 771–781 (1995).
[CrossRef]

Silva, H.

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

Sun, J.

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

Suzuki, R.

Tian, P.

Ueno, Y.

Willner, A. E.

A. E. Willner and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” J. Lightwave Technol.13(5), 771–781 (1995).
[CrossRef]

Zakynthinos, P.

Zirngibl, M.

M. Zirngibl, “An optical power equalizer based on one Er-doped fiber amplifier,” IEEE Photon. Technol. Lett.4(4), 357–359 (1992).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, and D. Novak, “A time-domain model for high-speed quantum-well lasers including carrier transport effects,” IEEE J. Sel. Top. Quantum Electron.1(2), 494–504 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. V. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, “All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs,” IEEE Photon. Technol. Lett.20(24), 2078–2080 (2008).
[CrossRef]

M. Zirngibl, “An optical power equalizer based on one Er-doped fiber amplifier,” IEEE Photon. Technol. Lett.4(4), 357–359 (1992).
[CrossRef]

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett.17(10), 2194–2196 (2005).
[CrossRef]

J. Lightwave Technol. (1)

A. E. Willner and W. Shieh, “Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,” J. Lightwave Technol.13(5), 771–781 (1995).
[CrossRef]

Opt. Commun. (1)

L. Huang, D. Huang, J. Sun, and D. Liu, “Spectral broadening of ultrashort optical pulse due to birefringence in semiconductor optical amplifiers,” Opt. Commun.223(4-6), 295–300 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (5)

J. Y. Emery, B. Lavigne, C. Porcheron, C. Janz, F. Dorgeuille, F. Pommereau, E. Gaborit, I. Guillemot-Neubauer, and M. Renaud, “Two-section semiconductor optical amplifier power equalizer with 8dBm output saturation power for 10Gbit/s applications,” in Conference on Optical Amplifiers and their Applications, Technical Digest Series (Optical Society of America, 1999), 30: 179–182.

C. H. Chen, U. Koren, R. E. Behringer, M. Chien, B. I. Miller, and K. F. Dreyer, “Two section semiconductor optical amplifier as optical power equalizer with high output power,” in Proc. Conf. Optical Amplifier and Their Applications, 1998, paper MC3–1.

N. Cheng, S.-H. Yen, J. Cho, Z. Xu, T. Yang, Y. Tang, and L. G. Kazovsky, “Long reach passive optical networks with adaptive power equalization using semiconductor optical amplifiers,” in Asia Communications and Photonics Conference and Exhibition, (Shanghai, 2009), FS4.

L. Liu, C. Michie, A. E. Kelly, and I. Andonovic, “Packet equalization in PONs using adjustable gain-clamped semiconductor optical amplifiers (AGC-SOA),” in Photonics Global Conference, (Singapore, 2010), Tu.B6.4.

D. Chiaroni, N. Le Sauze, T. Zami, and J.-Y. Emery, “Semiconductor optical amplifiers: a key technology to control the packet power variation,” in Proc. 27th Eur. Conf. on Opt. Comm. (Amsterdam, 2001), 3, 314–315.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of a two-section RSOA.

Fig. 2
Fig. 2

Signal propagation in a two-section RSOA.

Fig. 3
Fig. 3

(a1) Pulse evolution in stage 1, (b1) stage 2, (c1) stage 3, (d1) stage 4, and (e1) stage 5 for J1/J2 = 1. (a2) Pulse evolution in stage 1, (b2) stage 2, (c2) stage 3, (d2) stage 4, and (e2) stage 5 for J1/J2 = 4.

Fig. 4
Fig. 4

All-optical power equalization scheme based on a two-section RSOA.

Fig. 5
Fig. 5

(a) Optical gain versus Pin for a TW-SOA and (b) for a RSOA.

Fig. 6
Fig. 6

(a) Output optical power versus Pin for a TW-SOA and (b) for a RSOA.

Fig. 7
Fig. 7

(a) Q factor and BER versus input optical power for a RSOA and (b) a TW-SOA. Insets are the eye diagrams when Pin is −25 and −15 dBm.

Fig. 8
Fig. 8

(a1) Received optical power, (b1) Q factor and (c1) power fluctuation versus J1/J2 for a RSOA. (a2) Received optical power, (b2) Q factor and (c2) power fluctuation versus J1/J2 for a TW-SOA.

Fig. 9
Fig. 9

Waveform comparison of the received packet at different J1/J2 for the RSOA.

Fig. 10
Fig. 10

BER as a function of the received power. The insets are the time-domain waveforms before and after the RSOA.

Fig. 11
Fig. 11

(a) Power fluctuation, (b) Q factor and BER versus cavity length L.

Fig. 12
Fig. 12

(a) Power fluctuation, (b) Q factor and BER of the received packets versus L1/L.

Fig. 13
Fig. 13

(a) Power fluctuation, (b) Q factor and BER of the received packets versus R2.

Fig. 14
Fig. 14

(a) Power fluctuation, (b) Q factor and BER versus total current.

Tables (1)

Tables Icon

Table 1 Geometrical and material parameters used in the simulation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N i dt = J i ed R( N i ) v g g m ( N i , λ sig )( S i + + S i ) v g k=1 N m g m ( N i , λ k ) ( S i,k AS E + + S i, k AS E )+D 2 N i z 2
R( N i )=A N i +B N i 2 +C N i 3
g m ( N i ,λ)= g mc ( N i ,λ) 1+( ε SHB + ε CH )S
g m c ( N i ,λ)= a 0 ln( A N i +B N i 2 +C N i 3 A N 0 +B N 0 2 +C N 0 3 ) a 1 (λ λ p ) 2 + a 2 (λ λ p ) 3
λ p = λ 0 a 3 ( N i N 0 )
d S i ± dz =±[Γ g m ( N i , λ sig )α] S i ±
± d S i, k AS E ± dz =[Γ g m ( N i , λ k )α] S i, k AS E ± + βB N i 2 v g

Metrics