Abstract

The paper describes the implementation of fiber Bragg gratings inscribed by femtosecond laser pulses with a wavelength of 400 nm. The use of a Talbot interferometer for the inscription process makes multiplexing practicable. We demonstrate the functionality of a three-grating multiplexing sensor and the temperature stability up to 1200 °C for a single first-order Bragg grating.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  2. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express17(15), 12523–12531 (2009).
    [CrossRef] [PubMed]
  3. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express17(22), 19785–19790 (2009).
    [CrossRef] [PubMed]
  4. D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
    [CrossRef]
  5. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
    [CrossRef]
  6. T. Elsmann, E. Lindner, M. Becker, W. Ecke, M. Rothhardt, and H. Bartelt, “Erzeugung von Faser-Bragg-Gittern (FBGs) in Saphirfasern für die Hochtemperatursensorik,” in DGaO-proceeding, A28, (2011).
  7. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett.35(16), 2810–2812 (2010).
    [CrossRef] [PubMed]
  8. J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
    [CrossRef]
  9. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
    [CrossRef]
  10. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
    [CrossRef]
  11. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
    [CrossRef]
  12. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008).
    [CrossRef] [PubMed]
  13. V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
    [CrossRef]
  14. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997).
    [CrossRef] [PubMed]
  15. www.ibsen.dk/im
  16. W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 33.

2011 (1)

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (2)

2004 (1)

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

1997 (2)

1994 (1)

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
[CrossRef]

1993 (2)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

Bandyopadhyay, S.

Bartelt, H.

Becker, M.

Bergmann, J.

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

Brückner, S.

Busch, M.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Canning, J.

Chang, R. S. F.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
[CrossRef]

Chojetzki, C.

Cook, K.

Ding, H.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

Djeu, N.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
[CrossRef]

Dong, B.

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Ecke, W.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Fischer, D.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Franke, M.

Gong, J.

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Grattan, K. T. V.

Grobnic, D.

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett.35(16), 2810–2812 (2010).
[CrossRef] [PubMed]

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

Harrington, J. A.

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

Lally, E. M.

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Latka, I.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Li, Y.

Lindner, E.

Lu, J.

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

Mihailov, S.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

Mihailov, S. J.

Nubling, R. K.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

Phomsakha, V.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
[CrossRef]

Rothhardt, M.

Rothhardt, M. W.

Smelser, C.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

Smelser, C. W.

Stevenson, M.

Sun, T.

Wang, A.

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Wang, D. N.

Wang, J.

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Willsch, R.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Yang, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UVexposure through a phase mask,” Appl. Phys. Lett.62(10), 1035 (1993).
[CrossRef]

Electron. Lett. (1)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29(18), 1668–1669 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications,” IEEE Photon. Technol. Lett.16(11), 2505–2507 (2004).
[CrossRef]

IEEE Sens. J. (1)

J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J.11(12), 3406–3408 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol.20(11), 115301 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum.65(12), 3860–3861 (1994).
[CrossRef]

Other (3)

www.ibsen.dk/im

W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 33.

T. Elsmann, E. Lindner, M. Becker, W. Ecke, M. Rothhardt, and H. Bartelt, “Erzeugung von Faser-Bragg-Gittern (FBGs) in Saphirfasern für die Hochtemperatursensorik,” in DGaO-proceeding, A28, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Talbot interferometer (schematic).

Fig. 2
Fig. 2

Spectral characterization setup (schematic).

Fig. 3
Fig. 3

Characterization of a single FBG. Spectral response of the grating (black crosses) with a strong background signal (orange line), and the corrected reflection signal from the grating (green points), fit of a Gaussian function (blue line) and an asymmetric peak function (red dash-dotted line) to the corrected grating signal.

Fig. 4
Fig. 4

Temperature dependency of the Bragg wavelength for different peak identifications (crosses) and the fitted temperature sensitivity.

Fig. 5
Fig. 5

Spectra of an array with three gratings measured at 100 °C (black line) and 400 °C (red line).

Fig. 6
Fig. 6

Temperature dependency of multiplexed gratings. The initial Bragg wavelengths were 1527 nm (black boxes), 1549 nm (red circles) and 1574 nm (blue triangles).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m· λ Bragg = 2· n eff · Λ grating
λ Bragg = ( n eff · λ inscription ) / sin ϑ.

Metrics