Abstract

Nanoscale plasmonic structures allow for control of the emission of single emitters, such as fluorescent molecules and quantum dots, enabling phenomena such as lifetime reduction, emission redirection and color sorting of photons. We present single emitter emission tailored with arrays of holes of heterogeneous size, perforated in a gold film. With spatial control of the local amplitude and phase of the electromagnetic field radiated by the emitter, a desired near- or far-field distribution of the electromagnetic waves can be obtained. This control is established by varying the aspect ratio of the individual holes and the periodicity of the array surrounding the emitter. As an example showing the versatility of the technique, we present the strong focusing of the radiation of a highly divergent dipole source, for both p- and s-polarized waves.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
    [CrossRef] [PubMed]
  4. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  5. R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
    [CrossRef] [PubMed]
  6. T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
    [CrossRef] [PubMed]
  7. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  8. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
    [CrossRef] [PubMed]
  9. A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
    [CrossRef] [PubMed]
  10. R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
    [CrossRef]
  11. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
    [CrossRef]
  12. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
    [CrossRef] [PubMed]
  13. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
    [CrossRef] [PubMed]
  14. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  15. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
    [CrossRef] [PubMed]
  16. R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
    [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  18. Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003).
    [CrossRef]
  19. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
    [CrossRef] [PubMed]
  20. J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
    [CrossRef]
  21. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
    [CrossRef] [PubMed]
  22. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
    [CrossRef]
  23. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
    [CrossRef] [PubMed]
  24. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
    [CrossRef]
  25. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
    [CrossRef]
  26. J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
    [CrossRef]
  27. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
    [CrossRef]
  28. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
    [CrossRef] [PubMed]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2000), 2nd ed.
  30. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
    [CrossRef] [PubMed]
  31. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett.69, 3806–3808 (1996).
    [CrossRef]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
    [CrossRef]
  33. T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005).
    [CrossRef]
  34. S. G. Johnson, “The nlopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .
  35. A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987).
    [CrossRef]
  36. A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987).
    [CrossRef]
  37. M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Technical Report NA2009/06, Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009). http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf .
  38. W. Lukosz, “Light-emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation-patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am.69, 1495–1503 (1979).
    [CrossRef]

2012 (1)

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

2011 (1)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

2010 (4)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

2008 (4)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

2006 (4)

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

2005 (4)

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005).
[CrossRef]

2004 (3)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

2003 (2)

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003).
[CrossRef]

2000 (1)

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

1996 (1)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett.69, 3806–3808 (1996).
[CrossRef]

1995 (1)

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

1993 (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993).
[CrossRef] [PubMed]

1987 (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987).
[CrossRef]

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987).
[CrossRef]

1979 (1)

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

Atwater, H.

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Betzig, E.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

Biteen, J.

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Blair, S.

Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003).
[CrossRef]

Boltasseva, A.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Brolo, A. G.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Chen, J. J.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993).
[CrossRef] [PubMed]

Chung, L. W. K.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Cooper, M. D.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

Cui, Y. Y.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Eskelinen, A.-P.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Friedrich, A.

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

Gao, X. H.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Garcia-Parajo, M. F.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

Gersen, H.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Gordon, R.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2000), 2nd ed.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Hoheisel, J. D.

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Kildishev, A. V.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Knemeyer, J. P.

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

Kürzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Kwok, S. C.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Leung, P. T.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

Levenson, R. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Liu, Y. D.

Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003).
[CrossRef]

Liu, Z. T.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Lukosz, W.

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

Marme, N.

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Mertens, H.

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Moerland, R.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

Moerland, R. J.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

Moffitt, M. G.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Nie, S. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Novotny, L.

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett.69, 3806–3808 (1996).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Polman, A.

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Prangsma, J. C.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

Rekola, H. T.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Rinnooy Kan, A. H. G.

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987).
[CrossRef]

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987).
[CrossRef]

Riordon, J.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

Rivas, J. G.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Rochon, P.

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Runarsson, T. P.

T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005).
[CrossRef]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Segerink, F.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Sharma, G.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2000), 2nd ed.

Taminiau, T.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Timmer, G. T.

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987).
[CrossRef]

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987).
[CrossRef]

Törmä, P.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

Väkeväinen, A. I.

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

van Hulst, N.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

van Oosten, D.

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

Veerman, J. A.

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Wang, C. W.

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

Wang, X. Y.

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

Xiao, M.

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

Xie, X. S.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yao, X.

T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005).
[CrossRef]

Ye, Y. H.

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

Yuan, H. K.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

Zhang, J. Y.

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003).
[CrossRef]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett.69, 3806–3808 (1996).
[CrossRef]

Comp. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010).
[CrossRef]

FEBS Lett. (1)

A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007).
[CrossRef] [PubMed]

IEEE T. Syst. Man Cyb. (1)

T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006).
[CrossRef] [PubMed]

Math. Programming (2)

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987).
[CrossRef]

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987).
[CrossRef]

Nano Lett. (6)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008).
[CrossRef] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011).
[CrossRef] [PubMed]

H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008).
[CrossRef] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

New J. Phys. (2)

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008).
[CrossRef]

J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010).
[CrossRef]

Optics Lett. (1)

Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003).
[CrossRef]

Phys. Rev. B (2)

J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008).
[CrossRef] [PubMed]

H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

Rev. Modern Phys. (1)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010).
[CrossRef]

Science (2)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2000), 2nd ed.

M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Technical Report NA2009/06, Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009). http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf .

S. G. Johnson, “The nlopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Graphical representation of the simulation model to study and shape the radiation of a single emitter embedded in an array of nanoscale holes. A substrate with a refractive index of 1.5 is coated with a 200 nm thick layer of gold. A matrix of N × N rectangular holes is removed from the gold layer. The index of refraction in the holes and in front of the gold is that of vacuum. The periodicity of the holes in the x-direction is px, in the y-direction it is py. The holes all have an area of 34 × 103 nm2, but the aspect ratio Δxy of each individual hole can be varied from 0.3 to 3.4, modifying the local amplitude and phase of the electromagnetic field in the hole. The central hole contains a dipole, 10 nm above the substrate, which is oriented in the y-direction. During optimization, the fraction of power that is emitted by the dipole and is directed through surface S is maximized by adjusting the aspect ratio of the individual holes and the periodicities px and py. The surface S has dimensions of 800 × 800 nm2.

Fig. 2
Fig. 2

Electric field strength (in dB, left half of (a) and (b)) and phase (in degrees, right half of (a) and (b)) of the Ey field component, recorded on a plane in vacuum, 20 nm away from a layer of gold which has 11 × 11 rectangular holes inscribed in it. The central hole contains a y-oriented dipole in the center of the hole, 10 nm above the glass substrate. The field amplitude has been normalized to the maximum of the Ey component, occurring at the central hole. In (a) the aspect ratio (Δxy) of the holes is 1.0, in (b) it is 2.0. The location, size and shape of the holes are shown for a few rows of the complete array in the bottom part of the Figs. The set of holes with the strongest Ey field in or near them depends strongly on the aspect ratio of the holes. Moreover, the phase of the Ey field component is also radically different. Thus, the local phase near each hole directly depends on the aspect ratio of the holes. Therefore, by tuning the aspect ratio, it is possible to tune the local amplitude and phase of the electromagnetic field local to the holes.

Fig. 3
Fig. 3

Visualization of the electromagnetic field components, after optimizing an 11 × 11 array of nanoscale holes with the aspect ratio of each individual hole and the periodicity in the x- and y-direction as parameters. As a result of the optimization, the power emitted by a y-oriented dipole in the central hole is focused, at a distance of 2 wavelengths from the source, onto the surface marked with S. In (a), |Ey| is shown in the y = 0 plane in a cross-section through the central hole. The color scale has been clipped for viewing purposes. In (b), |Hx| is shown in the x = 0 plane. The plots indicate that the field strength is enhanced at the location of surface S, marked by the solid red line at z = 1.6 μm. More clearly, this can be seen in (c), where a cross-section of the power density I = 0|E|2/2 is shown, through the z = 1.6 μm plane at the location of surface S.

Fig. 4
Fig. 4

Cross sections of the power density I normalized to the power dissipated by the dipole P, taken at the plane containing surface S. A line section of I/P is shown for y = 0 and z = 1.6 μm in (a) and for x = 0 and z = 1.6 μm in (b). The graphs contain curves for the optimized structure, a reference calculation without the gold and a simplified structure which contains a matrix of holes all having the same aspect ratio which was obtained with a separate optimization run. The focusing action is purely the result of a redirection of the dipole’s emission.

Fig. 5
Fig. 5

Cross sections of the electromagnetic field components, taken at the plane containing surface S. In (a) and (b), the field component intensity for several wavelengths for the optimized geometry are shown, normalized to their maximum value. In (a), a line section of |Ey|2 along the x-direction is displayed, taken at y = 0 for z = 1.6 μm. In (b), |Hx|2 is shown in a line section along the y-direction, taken at x = 0 for z = 1.6 μm. For the wavelength that was used for optimization (850 nm), a clear focusing action is seen to take place. The emission pattern at wavelengths of 750 nm and 950 nm in contrast show strong side lobes and the focusing action disappears.

Fig. 6
Fig. 6

Relative amplitudes (a) and phases (b) of the y-polarized electric field in the center of the rows of holes on the x-axis (blue open circles) and y-axis (filled red circles), at 850 nm wavelength. The solid curve in both Figs. is the amplitude (a) and phase (b) distribution of a converging spherical scalar wave, evaluated at the location of the holes. In general, the amplitudes and phases of the Ey-field in the holes display the same trend as the simplified model.

Fig. 7
Fig. 7

Patch for MEEP version 1.1.1, file “structure.cpp”. The patch is necessary to remove a memory leak preventing the iterative use of MEEP in an optimization loop.

Fig. 8
Fig. 8

In (a), the result of a genetic optimization run involving 4689 generations is shown, for the geometry as presented in Fig 1. The percentage of the total power emitted by the dipole that flows through surface S in Fig. 1 is displayed on the y-axis. For clarity, the results of the optimization run have been low-pass filtered and decimated, such that the average increase in efficiency versus generation is better visible. In (b), the best solution found with the genetic optimization is used as a starting point for a multi-level-single-linkage optimization run, further increasing the percentage of emitted power that flows through S.

Fig. 9
Fig. 9

A graphical representation of the array of holes in the gold film is displayed, which shows the found optimal layout for the focusing optimization goal. The red dashed square indicates the area with holes that are listed in Table 1. The location of the hole and the location of its width in Table 1 have a one to one correspondence. The blue dotted lines indicate axes of symmetry.

Fig. 10
Fig. 10

Field amplitudes (a,c,e) and phases (b,d,f) of the electric field components Ex, Ey and Ez, respectively. The field amplitudes have been normalized to the maximum of |Ey|, occurring at the central hole. The field amplitudes have been clipped to −200 dB when the actual value was lower, e.g., zero.

Tables (1)

Tables Icon

Table 1 Δx sizes (widths) in nm of the holes in the top right quadrant of a 11 × 11 hole array. The optimal periodicity in the x-direction was px = 545 nm, in the y-direction it was py = 534 nm. The holes are graphically indicated by the red rectangle in Figure 9.

Metrics