Abstract

The positional alignment of femtosecond laser written Bragg grating waveguides within standard and coreless optical fiber has been exploited to vary symmetry and open strong optical coupling to a high density of asymmetric cladding modes. This coupling was further intensified with tight focusing of the laser pulses through an oil-immersion lens to control mode size against an asymmetric refractive index profile. By extending this Bragg grating waveguide writing into bulk fused silica glass, strong coupling to a continuum of radiation-like modes facilitated a significant broadening to over hundreds of nanometers bandwidth that blended into the narrow Bragg resonance to form into a strongly isolating (43 dB) optical edge filter. This Bragg resonance defined exceptionally steep edge slopes of 136 dB/nm and 185 dB/nm for unpolarized and linearly polarized light, respectively, that were tunable through the 1450 nm to 1550 nm telecommunication band.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightw. Technol.15, 1263–1276 (1997).
    [CrossRef]
  2. I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).
  3. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  4. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
    [CrossRef]
  5. K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
    [CrossRef]
  6. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
    [CrossRef]
  7. A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
    [CrossRef]
  8. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett.28, 995–997 (2003).
    [CrossRef] [PubMed]
  9. V. Mizrahi and J. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightw. Technol.11, 1513–1517 (1993).
    [CrossRef]
  10. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46, 1142–1149 (2007).
    [CrossRef] [PubMed]
  11. G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper TUG1.
  12. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A13, 296–313 (1996).
    [CrossRef]
  13. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
    [CrossRef] [PubMed]
  14. J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
    [CrossRef]
  15. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
    [CrossRef] [PubMed]
  16. R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
    [CrossRef]
  17. T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
    [CrossRef]
  18. T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009).
    [CrossRef] [PubMed]
  19. Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
    [CrossRef]
  20. T. Guo, H.-Y. Tam, and J. Albert, “Chirped and tilted fiber bragg grating edge filter for in-fiber sensor interrogation,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CThL3.
  21. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining (Springer-Verlag, 2012).
    [CrossRef]
  22. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
    [CrossRef]
  23. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type ii high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
    [CrossRef] [PubMed]
  24. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-bragg gratings in bulk fused silica,” Opt. Lett.31, 2690–2691 (2006).
    [CrossRef] [PubMed]
  25. H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  26. J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings ii: complete vectorial analysis,” Opt. Express20, 21434–21449 (2012).
    [CrossRef] [PubMed]
  27. J. R. Grenier, L. A. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CMZ1.
  28. W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
    [CrossRef]
  29. J. Li, S. Ho, M. Haque, and P. Herman, “Nanograting bragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express2, 1562–1570 (2012).
    [CrossRef]
  30. J. R. Grenier, L. A. Fernandes, J. S. Aitchison, P. V. S. Marques, and P. R. Herman, “Femtosecond laser fabrication of phase-shifted bragg grating waveguides in fused silica,” Opt. Lett.37, 2289–2291 (2012).
    [CrossRef] [PubMed]
  31. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits,” Opt. Express19, 18294–18301 (2011).
    [CrossRef] [PubMed]
  32. V. Bhardwaj, P. Corkum, D. Rayner, C. Hnatovsky, E. Simova, and R. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  33. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20, 24103–24114 (2012).
    [CrossRef] [PubMed]

2012 (4)

2011 (3)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits,” Opt. Express19, 18294–18301 (2011).
[CrossRef] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
[CrossRef]

2009 (2)

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
[CrossRef]

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009).
[CrossRef] [PubMed]

2008 (1)

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

2004 (2)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

V. Bhardwaj, P. Corkum, D. Rayner, C. Hnatovsky, E. Simova, and R. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
[CrossRef]

1997 (1)

K. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightw. Technol.15, 1263–1276 (1997).
[CrossRef]

1996 (2)

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A13, 296–313 (1996).
[CrossRef]

1993 (5)

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

V. Mizrahi and J. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightw. Technol.11, 1513–1517 (1993).
[CrossRef]

R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
[CrossRef]

1990 (1)

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Aitchison, J. S.

Albert, J.

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009).
[CrossRef] [PubMed]

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46, 1142–1149 (2007).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

T. Guo, H.-Y. Tam, and J. Albert, “Chirped and tilted fiber bragg grating edge filter for in-fiber sensor interrogation,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CThL3.

Ams, M.

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
[CrossRef]

Becker, R. G.

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Bennion, I.

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
[CrossRef]

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

Bhardwaj, V.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Campbell, R.

R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
[CrossRef]

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining (Springer-Verlag, 2012).
[CrossRef]

Chan, C.-F.

Chen, C.

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46, 1142–1149 (2007).
[CrossRef] [PubMed]

Corkum, P.

Ding, H.

Doran, N.

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

Dubov, M.

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Eaton, S.

H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
[CrossRef]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type ii high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
[CrossRef] [PubMed]

Erdogan, T.

Fernandes, L. A.

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper TUG1.

Grenier, J. R.

Grobnic, D.

Guo, T.

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009).
[CrossRef] [PubMed]

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
[CrossRef]

T. Guo, H.-Y. Tam, and J. Albert, “Chirped and tilted fiber bragg grating edge filter for in-fiber sensor interrogation,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CThL3.

Haque, M.

Henderson, G.

Herman, P.

J. Li, S. Ho, M. Haque, and P. Herman, “Nanograting bragg responses of femtosecond laser written optical waveguides in fused silica glass,” Opt. Mater. Express2, 1562–1570 (2012).
[CrossRef]

H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

Herman, P. R.

Hill, K.

K. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightw. Technol.15, 1263–1276 (1997).
[CrossRef]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Hill, K. O.

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Hnatovsky, C.

Ho, S.

Jafari, A.

Johnson, D.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Johnson, D. C.

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Jovanovic, N.

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings ii: complete vectorial analysis,” Opt. Express20, 21434–21449 (2012).
[CrossRef] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Kashyap, R.

R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

Kazansky, P.

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Khrushchev, I.

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Krämer, R. G.

Krug, P. A.

Lai, Y.

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

Laronche, A.

Li, J.

Liu, Y.

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
[CrossRef]

Lu, P.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18, 1277–1279 (1993).
[CrossRef] [PubMed]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Marques, P. V. S.

Marshall, G. D.

Martinez, A.

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Meltz, G.

K. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightw. Technol.15, 1263–1276 (1997).
[CrossRef]

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper TUG1.

Mihailov, S. J.

Mizrahi, V.

V. Mizrahi and J. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightw. Technol.11, 1513–1517 (1993).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper TUG1.

Nejadmalayeri, A. H.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
[CrossRef]

Nolte, S.

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings ii: complete vectorial analysis,” Opt. Express20, 21434–21449 (2012).
[CrossRef] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
[CrossRef]

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining (Springer-Verlag, 2012).
[CrossRef]

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining (Springer-Verlag, 2012).
[CrossRef]

Rayner, D.

Reekie, L.

J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
[CrossRef]

Russell, P.

J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
[CrossRef]

Shao, L.

Simova, E.

Sipe, J.

V. Mizrahi and J. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightw. Technol.11, 1513–1517 (1993).
[CrossRef]

Sipe, J. E.

Skinner, I.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Smelser, C. W.

Steel, M. J.

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings ii: complete vectorial analysis,” Opt. Express20, 21434–21449 (2012).
[CrossRef] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Sugden, K.

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

Svirko, Y.

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Tam, H.-Y.

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009).
[CrossRef] [PubMed]

T. Guo, H.-Y. Tam, and J. Albert, “Chirped and tilted fiber bragg grating edge filter for in-fiber sensor interrogation,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CThL3.

Taylor, R.

Thomas, J.

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Thomas, J. U.

Thomson, D. J.

Tünnermann, A.

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings ii: complete vectorial analysis,” Opt. Express20, 21434–21449 (2012).
[CrossRef] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Unruh, J.

Vineberg, K.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

Walker, R. B.

Williams, J.

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

Withford, M. J.

Wyatt, R.

R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
[CrossRef]

Yang, W.

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Zhang, H.

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type ii high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
[CrossRef] [PubMed]

H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

Zhang, L.

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
[CrossRef]

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Electron. Lett. (5)

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett.26, 1270–1272 (1990).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

A. Martinez, Y. Lai, M. Dubov, I. Khrushchev, and I. Bennion, “Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser,” Electron. Lett.41, 472–474 (2005).
[CrossRef]

J.-L. Archambault, L. Reekie, and P. Russell, “100% reflectivity bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett.29, 453–455 (1993).
[CrossRef]

R. Kashyap, R. Wyatt, and R. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett.29, 154–156 (1993).
[CrossRef]

J. Lightw. Technol. (2)

K. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightw. Technol.15, 1263–1276 (1997).
[CrossRef]

V. Mizrahi and J. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightw. Technol.11, 1513–1517 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357, 2387–2391 (2011).
[CrossRef]

J. Opt. Quant. Electron. (1)

I. Bennion, J. Williams, L. Zhang, K. Sugden, and N. Doran, “UV-written in-fibre bragg gratings,” J. Opt. Quant. Electron.28, 93–135 (1996).

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol.20, 034007 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Liu, L. Zhang, and I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Technol.10, L1–L3 (1999).
[CrossRef]

Nature Photon. (1)

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Opt. Express (1)

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express19, 325–341 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (1)

Other (5)

J. R. Grenier, L. A. Fernandes, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CMZ1.

T. Guo, H.-Y. Tam, and J. Albert, “Chirped and tilted fiber bragg grating edge filter for in-fiber sensor interrogation,” in CLEO - Laser Applications to Photonic Applications, (Optical Society of America, 2011), p. CThL3.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining (Springer-Verlag, 2012).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

G. Meltz, W. W. Morey, and W. H. Glenn, “In-fiber Bragg grating tap,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper TUG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Burst trains of femtosecond laser pulses focused into a traversing fused silica glass by a 100×, 1.25 NA oil-immersion lens to form a buried BGW. Inset, an optical micrograph of the end-facet of the resulting laser formed BGW.

Fig. 2
Fig. 2

Transmission spectra of ∼25 mm long BGWs fabricated in (a) the core of a SMF using 130 nJ, (b) the center of a coreless fiber using 130 nJ, (c) the cladding of a SMF using 120 nJ and (d) bulk fused silica glass using 120 nJ pulse energy. Insets, optical micrographs of BGW end-facets (writing laser was from the top) with expanded views (image diameter is 12 μm) of the waveguide zone overlain on the top-left, and mode profile pictures (image width is 10 μm).

Fig. 3
Fig. 3

Unpolarized transmission spectra for Bragg grating waveguides fabricated in bulk glass with pulse energy from 80 nJ to 140 nJ, with scanning in the (a) −x and (b) +x direction.

Fig. 4
Fig. 4

Optical micrographs of the end-facets (top row) and mode profile images (bottom row) of the BGWs written with pulse energies of (a) 140 nJ, (b) 120 nJ, (c) 100 nJ and (d) 80 nJ. The dotted ellipses indicate the size and approximate position of the mode relative to the guiding zone of the waveguide (white zones in top row).

Fig. 5
Fig. 5

(a) Transmission (solid blue curve) and reflection (dashed green curve) spectra recorded through a BGW with a large radiation mode loss for unpolarized probing light and transmission spectra (inset) with vertical (solid red curve) and horizontal (dashed black curve) polarized light. (b) Transmission spectra for edge filter waveguides fabricated with edge wavelengths of 1450 nm (dashed green curve) and 1550 nm (solid blue curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ λ S 3.1 ( λ L 2 π n cl a cl ) λ S λ L .
λ off = λ B 2 ( 1 n cl n eff ) .

Metrics