Abstract

We propose and fabricate a LiNbO3-based nonlinear photonic crystal with locally ordered ferroelectric domains. The nonlinearity modulation provides sets of uniformly distributed reciprocal lattice vectors, ensuring broadband high frequency conversion efficiency. Frequency tripling via cascading is demonstrated in the range of 1400–1830 nm, with energy conversion efficiency up to ∼15%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
    [CrossRef]
  2. S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
    [CrossRef]
  3. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
    [CrossRef]
  4. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
    [CrossRef]
  5. N. G. B. Broderick, R. T. Bratfalean, T. M. Montro, and D. J. Richardson, “Temperature and wavelength tuning of second-, third-, and fourth-hamonic generation in a two-dimensional hexagonally poled nonlinear crystal,” J. Opt. Soc. Am. B19, 2263–2272 (2002).
    [CrossRef]
  6. J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
    [CrossRef]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
    [CrossRef]
  8. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81, 4136–4139 (1998).
    [CrossRef]
  9. N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
    [CrossRef] [PubMed]
  10. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett.30, 424–426 (2005).
    [CrossRef] [PubMed]
  11. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010).
    [CrossRef]
  12. M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
    [CrossRef]
  13. M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
    [CrossRef]
  14. Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
    [CrossRef]
  15. I. Varon, G. Porat, and A. Arie, “Controlling the disorder properties of quadratic nonlinear photonic crystals,” Opt. Lett.36, 3978–3980 (2011).
    [CrossRef] [PubMed]
  16. Y. Sheng, S. M. Saltiel, and K. Koynov, “Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal,” Opt. Lett.34, 656–658 (2009).
    [CrossRef] [PubMed]
  17. W. Wang, V. Roppo, K. Kalinowski, Y. Kong, D. N. Neshev, C. Cojocaru, J. Trull, R. Vilaseca, K. Staliunas, W. Krolikowski, S. M. Saltiel, and Yu. S. Kivshar, “Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media,” Opt. Express17, 20117–20123 (2009).
    [CrossRef] [PubMed]
  18. Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
    [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984).
    [CrossRef]
  20. A. M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009).
    [CrossRef]

2011 (4)

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

I. Varon, G. Porat, and A. Arie, “Controlling the disorder properties of quadratic nonlinear photonic crystals,” Opt. Lett.36, 3978–3980 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010).
[CrossRef]

2009 (2)

2008 (1)

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

2006 (1)

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

2002 (1)

2000 (1)

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81, 4136–4139 (1998).
[CrossRef]

1997 (1)

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

1993 (1)

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984).
[CrossRef]

1962 (1)

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Aitchison, S. J.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Amstrong, J. A.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Arie, A.

I. Varon, G. Porat, and A. Arie, “Controlling the disorder properties of quadratic nonlinear photonic crystals,” Opt. Lett.36, 3978–3980 (2011).
[CrossRef] [PubMed]

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010).
[CrossRef]

Baudier-Raybaut, M.

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Bekker, A.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81, 4136–4139 (1998).
[CrossRef]

Bloembergen, N.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Bratfalean, R. T.

Broderick, N. G. B.

Broderick, N. G. R

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Broderick, N. G. R.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Chai, W.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Cheng, B.

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

Cojocaru, C.

Dalibard, J.

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

Ducuing, J.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Fischer, B.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
[CrossRef]

Gallo, K.

Gerbier, F.

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

Gong, Y. X.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Haïdar, R.

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Hanna, D.C.

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Helmy, A. S.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Holmes, B. M.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Horowitz, M.

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
[CrossRef]

Hutchings, D. C.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Jin, H.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Kalinowski, K.

Kivshar, Yu. S.

Kong, Y.

Koynov, K.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Y. Sheng, S. M. Saltiel, and K. Koynov, “Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal,” Opt. Lett.34, 656–658 (2009).
[CrossRef] [PubMed]

Krolikowski, W.

Kupecek, Ph.

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984).
[CrossRef]

Lemasson, Ph.

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Leng, H. Y.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Lewen, R.

Li, Z.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Ma, B.

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

Ma, D.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Mimoun, E.

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

Ming, N.

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Montro, T. M.

Neshev, D. N.

Offerhaus, H. L.

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Peacock, A. C.

Pershan, P. S.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Porat, G.

Ren, M.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Richardson, D. J.

N. G. B. Broderick, R. T. Bratfalean, T. M. Montro, and D. J. Richardson, “Temperature and wavelength tuning of second-, third-, and fourth-hamonic generation in a two-dimensional hexagonally poled nonlinear crystal,” J. Opt. Soc. Am. B19, 2263–2272 (2002).
[CrossRef]

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Roppo, V.

Rosencher, E.

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Ross, G. W.

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Saltiel, S. M.

Sarlo, L. D.

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

Sheng, Y.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Y. Sheng, S. M. Saltiel, and K. Koynov, “Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal,” Opt. Lett.34, 656–658 (2009).
[CrossRef] [PubMed]

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

Sigal, I.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Staliunas, K.

Trull, J.

Varon, I.

Vilaseca, R.

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010).
[CrossRef]

Wagner, S. J.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Wang, T.

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

Wang, W.

Weiner, A. M.

A. M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009).
[CrossRef]

Xie, Z. D.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Xu, P.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Younis, U.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

Yu, X. Q.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Zhang, C.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Zhang, D.

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

Zhu, S.

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Zhu, S. N.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Zhu, Y.

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Zondy, J.

E. Mimoun, L. D. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express17, 18684–18691 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

M. Horowitz, A. Bekker, and B. Fischer, “Broadband second-harmonic generation in SrxBa1−xNb2O6 by spread spectrum phase matching with controllable domain gratings,” Appl. Phys. Lett.62, 2619–2621 (1993).
[CrossRef]

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett.99, 031108 (2011).
[CrossRef]

Y. Sheng, T. Wang, B. Ma, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88, 041121 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, S. J. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron.47, 834–840 (2011).
[CrossRef]

IEEE. J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE. J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photon. Rev.4, 355–373 (2010).
[CrossRef]

Nature (London) (1)

M. Baudier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Nonlinear optics: disorder is the new order,” Nature (London)432, 285–286 (2004).
[CrossRef]

Nature Commun. (1)

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nature Commun.2, 429 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron.16, 373–375 (1984).
[CrossRef]

Phys. Rev. (1)

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. Lett. (2)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81, 4136–4139 (1998).
[CrossRef]

N. G. R Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D.C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84, 4345–4348 (2000).
[CrossRef] [PubMed]

Science (1)

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmoinc generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997).
[CrossRef]

Other (1)

A. M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic presentation of the locally order nonlinear photonic structure. (b) Micrograph of the etched +z surface of the LiNbO3 crystal fabricated by electric-field poling technique. The inset shows the enlarged domain pattern on the −z surface.

Fig. 2
Fig. 2

Top row: Theoretical (a) and experimental (b) Fourier spectra of the locally order nonlinear photonic structure. Bottom row depicts radial profiles of the spectra.

Fig. 3
Fig. 3

(a) The wavelength tuning curve of the cascaded THG in the locally ordered nonlinear photonic crystal. The inset depicts far-field images of the SH and TH beams at λ = 1.45 μm.(b–d) Diagrams of the phase matching in the SHG (b) and SFM (c,d). Graphs in (c) and (d) involve collinear and transversely emitted SH waves, respectively and reciprocal lattice vectors from different domains represented by homocentric rings.

Fig. 4
Fig. 4

(a) Example of spectra of the interacting harmonics for fundamental wavelength λ1 = 1.4 μm; (b) Power (black squares) and conversion efficiency (red dots) of the cascaded third harmonic (λ1 = 1620 nm) vs. the average power of the fundamental wave. (b) The dependence of the power of cascaded third harmonic generation as a function of the incidence angle of the fundamental beam (Pin =1.3 mW).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = circ ( x , y ) m = 1 M n = 1 N j = 1 2 δ ( x ( m b + x m n ) U m n j , y ( n b + y m n ) V m n j ) ,
circ ( x , y ) = { 1 if ( x 2 + y 2 ) 2 r 0 2 0 otherwise .
x m n = d m n cos θ m n , y m n = d m n sin θ m n ,
U m n j = i = 0 3 a j 2 [ cos ( θ m n + i π / 2 ) sin ( θ m n + i π / 2 ) ] , V m n j = i = 0 3 a j 2 [ sin ( θ m n + i π / 2 ) + cos ( θ m n + i π / 2 ) ] ,

Metrics