Abstract

We propose a novel scheme of OTDM utilizing pulse position modulation, where optical null headers (ONH) are inserted between the signal pulses periodically to allow channel identification. The ONH also achieves in-band clock distribution through the generation of high contrast pilot tone on the signal power spectra, enabling baud-rate flexible clock recovery. Using the novel scheme, clock recovery with a timing jitter of less than 200 fs is achieved at different baud rates up to 344 Gbaud. We demonstrate stable clock recovery with channel identification in 344-Gb/s OTDM transmissions over dispersion managed 3-km SMF.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
    [CrossRef] [PubMed]
  2. K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).
  3. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
    [CrossRef]
  4. D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).
  5. O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett.8(8), 1094–1096 (1996).
    [CrossRef]
  6. R. Salem, A. A. Ahmadi, G. E. Tudury, G. M. Carter, and T. E. Murphy, “Two-photon absorption for optical clock recovery in OTDM networks,” J. Lightwave Technol.24(9), 3353–3362 (2006).
    [CrossRef]
  7. L. K. Oxenløwe, F. Gómez-Agis, C. Ware, S. Kurimura, H. C. Hansen Mulvad, M. Galili, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640-Gbit/s Data transmission and clock recovery using an ultrafast periodically poled lithium niobate device,” J. Lightwave Technol.27(3), 205–213 (2009).
    [CrossRef]
  8. J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).
  9. B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
    [CrossRef]
  10. T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
    [CrossRef]
  11. D. Kong, H. Wang, Y. Li, J. Zang, S. Zhou, X. Jia, J. Wu, and J. Lin, “Ultra-low timing-jitter 40GHz clock recovery using EAM-MZM double-loop and its application in a 640Gbit/s OTDM system,” Opt. Express20(26), B615–B623 (2012).
    [CrossRef] [PubMed]
  12. M. Galili, H. C. Hansen Mulvad, L. K. Oxenlowe, H. Hu, E. Palushani, A. T. Clausen, and P. Jeppesen, “650 Gbit/s OTDM transmission over 80 km SSMF incorporating clock recovery, channel identification and demultiplexing in a polarisation insensitive receiver,” in Proc. Opt. Fiber Commun. Conf. 2010, OWO3, (San Diego, USA, 2010).
  13. M. Kagawa, H. Murai, H. Tsuji, K. Sasaki, and K. Fujii, “Control and stabilization of bit-wise phase correlation in 160 (4 x 40) Gbit/s OTDM signal and its impact on transmission,” Opt. Express16(14), 10039–10052 (2008).
    [CrossRef] [PubMed]
  14. T. Kurosu, K. Tanizawa, and S. Namiki, “In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing,” Electron. Lett.48(14), 863–864 (2012).
    [CrossRef]
  15. T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
    [CrossRef]
  16. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  17. M. Jinno, “Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch,” IEEE J. Quantum Electron.30(12), 2842–2853 (1994).
    [CrossRef]
  18. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express20(2), 1129–1140 (2012).
    [CrossRef] [PubMed]
  19. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol.24(7), 2510–2522 (2006).
    [CrossRef]

2013 (1)

2012 (3)

2011 (3)

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

2010 (1)

2009 (2)

L. K. Oxenløwe, F. Gómez-Agis, C. Ware, S. Kurimura, H. C. Hansen Mulvad, M. Galili, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640-Gbit/s Data transmission and clock recovery using an ultrafast periodically poled lithium niobate device,” J. Lightwave Technol.27(3), 205–213 (2009).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

2008 (1)

2006 (2)

2005 (1)

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

2003 (1)

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

2000 (1)

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

1996 (1)

O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett.8(8), 1094–1096 (1996).
[CrossRef]

1994 (1)

M. Jinno, “Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch,” IEEE J. Quantum Electron.30(12), 2842–2853 (1994).
[CrossRef]

Ahmadi, A. A.

Akimoto, R.

Alic, N.

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

Asami, T.

Bres, C.-S.

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

Carter, G. M.

Clausen, A. T.

Deng, K. L.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Dreyer, K. F.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Erasme, D.

Fujii, K.

Furuta, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

Galili, M.

Gómez-Agis, F.

Guan, P.

Hansen Mulvad, H. C.

Hasama, T.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Hasegawa, T.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Hirooka, T.

Hu, H.

Ichikawa, J.

Ide, S.

Igarashi, K.

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol.24(7), 2510–2522 (2006).
[CrossRef]

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Inoue, T.

Ishikawa, H.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Ito, H.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

Jensen, J. B.

Jeppesen, P.

Jia, X.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

M. Jinno, “Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch,” IEEE J. Quantum Electron.30(12), 2842–2853 (1994).
[CrossRef]

Johnson, J. E.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Kagawa, M.

Kamatani, O.

O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett.8(8), 1094–1096 (1996).
[CrossRef]

Katoh, K.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Kawanishi, S.

O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett.8(8), 1094–1096 (1996).
[CrossRef]

Kikuchi, K.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Kong, D.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kuo, B. P.

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

Kurimura, S.

Kurosu, T.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

T. Kurosu, K. Tanizawa, and S. Namiki, “In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing,” Electron. Lett.48(14), 863–864 (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Kurumida, J.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Kuwatsuka, H.

Lee, J. H.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Li, Y.

Lin, J.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Mikkelsen, B.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Mulvad, H. C. H.

Murai, H.

Murphy, T. E.

Nagashima, T.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Nakajima, H.

Nakamura, M.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).

Nakatogawa, T.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Nakazawa, M.

Namiki, S.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

T. Kurosu, K. Tanizawa, and S. Namiki, “In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing,” Electron. Lett.48(14), 863–864 (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol.24(7), 2510–2522 (2006).
[CrossRef]

Ohara, S.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Ohno, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

Onaka, H.

Oxenløwe, L. K.

Oyamada, K.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Peucheret, C.

Radic, S.

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

Raybon, G.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Ruan, P.

Salem, R.

Sasaki, K.

Sato, K.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

Shimizu, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Sugimoto, N.

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tanaka, Y.

Tanizawa, K.

T. Kurosu, K. Tanizawa, S. Namiki, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, T. Nakatogawa, K. Oyamada, Y. Tanaka, S. Ide, H. Onaka, and T. Asami, “Dynamic optical path switching in 172-Gb/s OTDM transmissions of ultra-high definition video signals using fast channel-identifiable clock recovery and integratable devices,” J. Lightwave Technol.31(4), 594–601 (2013).
[CrossRef]

T. Kurosu, K. Tanizawa, and S. Namiki, “In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing,” Electron. Lett.48(14), 863–864 (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

Tobioka, H.

Tong, D. T. K.

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

Tsuji, H.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tudury, G. E.

Wang, H.

Ware, C.

Wiberg, A. O. J.

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

Wu, J.

Zang, J.

Zhou, S.

Electron. Lett. (3)

D. T. K. Tong, K. L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett.36(23), 1951–1952 (2000).

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively mode-locked semiconductor laser,” Electron. Lett.39(5), 453–455 (2003).
[CrossRef]

T. Kurosu, K. Tanizawa, and S. Namiki, “In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing,” Electron. Lett.48(14), 863–864 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Jinno, “Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch,” IEEE J. Quantum Electron.30(12), 2842–2853 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron.17(2), 446–457 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett.8(8), 1094–1096 (1996).
[CrossRef]

J. H. Lee, S. Ohara, T. Nagashima, T. Hasegawa, N. Sugimoto, K. Igarashi, K. Katoh, and K. Kikuchi, “Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber,” IEEE Photon. Technol. Lett.17(12), 2658–2660 (2005).

B. P. Kuo, A. O. J. Wiberg, C.-S. Bres, N. Alic, and S. Radic, “Ultrafast Clock recovery and sampling by single parametric devices,” IEEE Photon. Technol. Lett.23(3), 191–193 (2011).
[CrossRef]

IEICE Trans. Commun. (1)

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun.E94-B, 876–883 (2011).

J. Lightwave Technol. (4)

Opt. Express (4)

Other (1)

M. Galili, H. C. Hansen Mulvad, L. K. Oxenlowe, H. Hu, E. Palushani, A. T. Clausen, and P. Jeppesen, “650 Gbit/s OTDM transmission over 80 km SSMF incorporating clock recovery, channel identification and demultiplexing in a polarisation insensitive receiver,” in Proc. Opt. Fiber Commun. Conf. 2010, OWO3, (San Diego, USA, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual diagram of DS-OTDM.

Fig. 2
Fig. 2

Experimental setup for the verification of baud-rate flexible operation. Syn: Synthesizer. VOA: Variable optical attenuator, OSO: Optical sampling oscilloscope, CR: Clock recovery, PR: Photo receiver, SO: Sampling oscilloscope, ESA: Electrical spectrum analyzer.

Fig. 3
Fig. 3

(a) Power spectra of the signals at 1) 43Gbaud, 2) 172 Gbaud and 3) 344 Gbaud. (b) RF spectra of the recovered clock from the signals at 1) 43 Gbaud, 2) 172 Gbaud and 3) 344 Gbaud.

Fig. 4
Fig. 4

Timing jitter and power of the pilot tone as a function of ONH ratio. Inset shows the temporal waveform of the recovered clock at 43.018GHz. (The dashed lines are guide to the eye.)

Fig. 5
Fig. 5

(a) Timing jitter and power of the pilot tone as a function of OSNR. Inset shows the temporal waveforms of 43-GHz recovered clock. (The dashed lines are guide to the eye.) (b) Temporal waveforms of 344-Gbaud DS-OTDM signals with OSNR of 7dB and 32dB. (Red triangle shows the position of ONH.)

Fig. 6
Fig. 6

Experimental setup for 344-Gbaud DS-OTDM transmission. MLFL: Mode-locked fiber laser, LN: Intensity modulator, HNLF: Highly nonlinear fiber, F: Filter, PPG: Pulse pattern generator, CPF: Comb-profile-like fiber, MLLD: Mode-locked laser diode, CR: Clock recovery, PC: Polarization controller, ATT: Attenuator, PD: Photo detector, PM: Power meter, BERT: Bit error rate tester.

Fig. 7
Fig. 7

(a) Temporal waveform of the received 344-Gbaud DS-OTDM signal, (b) Bit error rates measured for the eight channels with a fixed received power of −5.5 dBm. (c) Bit error rate curves measured for ch. 6.

Metrics