Abstract

In this work a novel approach in synchronization of electrooptic sampling systems for the ultra-broadband characterization of active mm-wave and THz devices is presented. The relative time jitter between sampled circuit and probing electrooptic head is eliminated by using a femtosecond laser system both as the generator of CW driving the device under test as well as the impulsively probing element. Previous ultra-broadband approaches were applicable to passive components driven by THz impulses, only. The presented system is more generally applicable to active mm-wave and THz components driven by conventional CW electronic sources. Broadband analysis on silicon nonlinear transmission line elements up to a frequency of 300 GHz is presented in order to illustrate the capabilities of the concept.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).
  2. H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).
  3. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).
  4. K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
    [CrossRef]
  5. T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
    [CrossRef]
  6. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
    [CrossRef]
  7. M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).
  8. L. Tripodi, M. Matters, D. Van Goor, X. Hu, and A. Rydberg, “Extremely Wideband CMOS Circuits for Future THz Applications,” Analog Circuit Design (Springer, 2012), pp. 237–255.
  9. www.ultra-project.eu

2012

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

2004

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

2001

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
[CrossRef]

1996

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

1994

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

1982

J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).

Allen, S. T.

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

Bolivar, P. H.

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

Bowers, J. E.

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

Gabel, C. W.

J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).

Giboney, K. S.

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

Heiliger, H. M.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Heiliger, H. -M.

H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).

Huber, R.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

Jamshidifar, M.

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
[CrossRef]

Kübler, C.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

Kurz, H.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).

Leitenstorfer, A.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

Löffler, T.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Lüpke, G.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Meyer, C.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Mourou, G. A.

J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).

Nagel, M.

H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).

Ohlhoff, C.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Pfeifer, T.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

Rodwell, M. J. W.

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

Roskos, H. G.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).

Schäfer, H.

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

Spickermann, G.

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

Tübel, S.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

Valdmanis, J. A.

J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).

Whitaker, J. F.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
[CrossRef]

Yang, K.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
[CrossRef]

Appl. Phys. Lett.

J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett.41(3), 211–212 (1982).

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detecetion of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared,” Appl. Phys. Lett.85, 3360–3362 (2004).

IEEE J. Sel. Top. Quantum Electron.

T. Pfeifer, H. M. Heiliger, T. Löffler, C. Ohlhoff, C. Meyer, G. Lüpke, H. G. Roskos, and H. Kurz, “Optoelectronic on-chip characterization of ultrafast electric devices: measurements techniques and applications,” IEEE J. Sel. Top. Quantum Electron.2(3), 586–604 (1996).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric field mapping system using an opticl-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett.11(4), 164–166 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

K. S. Giboney, S. T. Allen, M. J. W. Rodwell, and J. E. Bowers, “Picoseconds measurements by free-running electro-optic sampling,” IEEE Photon. Technol. Lett.6(11), 1353–1355 (1994).
[CrossRef]

Microw. Opt. Technol. Lett.

M. Jamshidifar, G. Spickermann, H. Schäfer, and P. H. Bolivar, “200-Ghz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett.54(8), 1858–1862 (2012).

Other

L. Tripodi, M. Matters, D. Van Goor, X. Hu, and A. Rydberg, “Extremely Wideband CMOS Circuits for Future THz Applications,” Analog Circuit Design (Springer, 2012), pp. 237–255.

www.ultra-project.eu

H. -M. Heiliger, M. Nagel, H. G. Roskos, and H. Kurz,” Thin-film microstrip lines for mm and sub-mm-wave on-chip interconnects,” IEEE MTT-S Int. Microwave Symp. Dig.421–424 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Electrooptic sampling (a) old setup or a conventional MM-LS (LM-Ms) setup with PLL synchronization and microwave source to drive the DUT (b) the LM-LS setup with new synchronization technique, whereby the laser itself generates the microwave signal directly, without a PLL loop.(c) a detailed schematic of the LM-LS setup (b) and the mechanism of generating microwave signal from laser to drive DUT.

Fig. 2
Fig. 2

Measured microwave signal generated from femto-second laser pulse in comparison to a signal of Rohde&Schwarz® SMF 100A low phase noise microwave synthesizer. The phase noise of the signals is close to each other.

Fig. 3
Fig. 3

Mechanism of detection and down converting the NLTL (top left) signal by electrooptic sampling in frequency domain. The comb of the NLTL has a spacing of 10 GHz. An IF (50 kHz) is added by an IQ modulator to the carrier frequency. The spacing between adjacent carriers of the laser comb (bottom left) is one laser repetition rate (75 MHz). Only carriers which are close (ωc from laser and ωc + IF from the NLTL) to each other are effectively detected at the base band and higher difference frequencies are filtered. The output base band is a replica of NLTL signal at low frequencies (i.e. multiples of the IF).

Fig. 4
Fig. 4

The output signal of the IQ modulator, before injecting into the NLTL, which is up converted signal (microwave generated by laser) with an IF. The mixing of IQ modulator generates a sideband which also has one IF space from the carrier. The level of this sideband after optimization is reduced to −32dBc to minimize the artifact while mixing in the NLTL.

Fig. 5
Fig. 5

Measured signal of the NLTL output with LM-LS setup and using lock-in amplifier up to 30th harmonic (300 GHz). The injected signal of the NLTL is a microwave signal generated by laser at 10 GHz. Due decreasing jitter, we are able to measure higher harmonics with higher signal to noise ratio. The system sensitivity is restricted by shot noise level which is measured and calculated in [7].

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f( x )= i=0 a i   x i
p out = p in   p f(x) = p x
{ x=Acos( ω c t ) p f(x) = p x  = p c = 1 2 |A | 2  
Acos( ω c t ) x  + mcos[ ( ω m + ω c )t ] Δx
p x+Δx = p x + p Δx = 1 2 | A | 2 + 1 2 |m | 2
f( x+Δx )=  i=0 a i   (x+Δx) i = i=0 a i   x i ( 1+ Δx x ) i i=0 a i x i ( 1+i Δx x ) = i=0 a i x i + i=1 a i .i.Δx. x i1 =f( x )+ ( i=1 a i .i.Δx. x i1 ) Δf(x)
Δf(x)=mcos[( ω m + ω c )t] i=1 a i .i. [Acos( ω c t)] i
p f( x+Δx ) = p f( x ) + p Δf(x)
p out = p in     p f(x+Δx) = p x+Δx = p x + p Δx
p Δf(x)  = p Δx = 1 2 |m | 2

Metrics