Abstract

Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hou, Z. Lee, and A. D. Weidemann, “Why does the Secchi disk disappear? An imaging perspective,” Opt. Express15(6), 2791–2802 (2007).
    [CrossRef] [PubMed]
  2. W. Hou, D. J. Gray, A. D. Weidemann, and R. A. Arnone, “Comparison and validation of point spread models for imaging in natural waters,” Opt. Express16(13), 9958–9965 (2008).
    [CrossRef] [PubMed]
  3. K. J. Voss, “Simple empirical model of the oceanic point spread function,” Appl. Opt.30(18), 2647–2651 (1991).
    [CrossRef] [PubMed]
  4. W. Hou and A. Weidemann, “Diver visibility: why one can not see as far?” in SPIE Proc. 7317, W. Hou, ed. (SPIE, Orlando, FL, USA, 2009).
  5. W. H. Wells, “Theory of small angle scattering,” in AGARD Lec. Series No. 61(NATO, 1973).
  6. G. D. Gilbert and R. C. Honey, “Optical turbulence in the sea,” in Underwater photo-optical instrumentation applications. (SPIE, 1972), pp. 49–55.
  7. R. C. Honey and G. P. Sorenson, “Optical absorption and turbulenced induced narrow angle forward scatter in the sea,” in AGARD Conference Proceeding No.77 on Electromagnetics of the sea(1970).
  8. W. Hou, S. Woods, E. Jarosz, W. Goode, and A. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt.51(14), 2678–2686 (2012).
    [CrossRef] [PubMed]
  9. W. Hou, “A simple underwater imaging model,” Opt. Lett.34(17), 2688–2690 (2009).
    [CrossRef] [PubMed]
  10. S. A. Thorpe and J. M. Brubaker, “Observations of sound reflection by temperature microstructure,” Limnol. Oceanogr.28(4), 601–613 (1983).
    [CrossRef]
  11. L. Goodman, “Acoustic scattering from ocean microstructure,” J. Geophys. Res.95(C7), 11557–11573 (1990).
    [CrossRef]
  12. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt.6(4), 741–746 (1967).
    [CrossRef] [PubMed]
  13. W. Hou, A. Weidemann, D. Gray, and G. R. Fournier, “Imagery-derived modulation transfer function and its applications for underwater imaging,” in Applications of Digital Image Processing XXX, A. G. Tescher, ed. (SPIE, San Diego, 2007), pp. 6696221–6696228.
  14. P. C. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt.42(15), 2794–2803 (2003).
    [CrossRef] [PubMed]
  15. L. Mullen, A. Laux, B. M. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt.43(19), 3874–3892 (2004).
    [CrossRef] [PubMed]
  16. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
    [CrossRef]
  17. D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
    [CrossRef]
  18. Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
    [CrossRef]
  19. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, and C. R. Truman, “Light scattering on oceanic turbulence,” Appl. Opt.43(30), 5662–5668 (2004).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  21. T. Ross and R. Lueck, “Sound scattering from oceanic turbulence,” Geophys. Res. Lett.30(6), 1343 (2003).
    [CrossRef]
  22. S. Woods, W. Hou, W. Goode, E. Jarosz, and A. Weidemann, “Quantifying turbulence microstructure for improvement of underwater imaging,” in Ocean Sensing and Monitoring, SPIE Defense and Security Symposium, W. Hou, ed. (SPIE, Orlando, FL, 2011).
  23. S. W. Effler, A. R. Rrestigiacomo, and D. M. O'Donnel, “Water quality and limonological monitoring for Skaneateles Lake: Field Year 2007,” (Upstate Freshwater Institute, 2008), p. 57.
  24. T. R. Osborn and C. S. Cox, “Oceanic fine structure,” Geophys. Astrophys. Fluid Dyn.3(1), 321–345 (1972).
    [CrossRef]
  25. G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulence fluid,” J. Fluid Mech.5, 113–133 (1959).
    [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

2012 (1)

2009 (1)

2008 (1)

2007 (1)

2004 (2)

2003 (2)

1997 (1)

Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
[CrossRef]

1994 (1)

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

1991 (1)

1990 (1)

L. Goodman, “Acoustic scattering from ocean microstructure,” J. Geophys. Res.95(C7), 11557–11573 (1990).
[CrossRef]

1983 (1)

S. A. Thorpe and J. M. Brubaker, “Observations of sound reflection by temperature microstructure,” Limnol. Oceanogr.28(4), 601–613 (1983).
[CrossRef]

1972 (1)

T. R. Osborn and C. S. Cox, “Oceanic fine structure,” Geophys. Astrophys. Fluid Dyn.3(1), 321–345 (1972).
[CrossRef]

1967 (1)

1959 (1)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulence fluid,” J. Fluid Mech.5, 113–133 (1959).
[CrossRef]

Arnone, R. A.

Batchelor, G. K.

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulence fluid,” J. Fluid Mech.5, 113–133 (1959).
[CrossRef]

Bergel, I.

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

Bogucki, D. J.

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

Brubaker, J. M.

S. A. Thorpe and J. M. Brubaker, “Observations of sound reflection by temperature microstructure,” Limnol. Oceanogr.28(4), 601–613 (1983).
[CrossRef]

Chang, P. C.

Concannon, B. M.

Cox, C. S.

T. R. Osborn and C. S. Cox, “Oceanic fine structure,” Geophys. Astrophys. Fluid Dyn.3(1), 321–345 (1972).
[CrossRef]

Domaradzki, J. A.

Dror, I.

Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
[CrossRef]

Dvir, A.

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

Ecke, R. E.

Flitton, J. C.

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

Gilbert, G. D.

Goode, W.

Goodman, L.

L. Goodman, “Acoustic scattering from ocean microstructure,” J. Geophys. Res.95(C7), 11557–11573 (1990).
[CrossRef]

Gray, D. J.

Hopcraft, K. I.

Hou, W.

Jakeman, E.

Jarosz, E.

Jordan, D. L.

Katsev, I. L.

Kopeika, N.

Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

Laux, A.

Lee, Z.

Lueck, R.

T. Ross and R. Lueck, “Sound scattering from oceanic turbulence,” Geophys. Res. Lett.30(6), 1343 (2003).
[CrossRef]

Mullen, L.

Osborn, T. R.

T. R. Osborn and C. S. Cox, “Oceanic fine structure,” Geophys. Astrophys. Fluid Dyn.3(1), 321–345 (1972).
[CrossRef]

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

Pernicka, J. C.

Prikhach, A. S.

Ross, T.

T. Ross and R. Lueck, “Sound scattering from oceanic turbulence,” Geophys. Res. Lett.30(6), 1343 (2003).
[CrossRef]

Sadot, D.

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

Thorpe, S. A.

S. A. Thorpe and J. M. Brubaker, “Observations of sound reflection by temperature microstructure,” Limnol. Oceanogr.28(4), 601–613 (1983).
[CrossRef]

Truman, C. R.

Voss, K. J.

Walker, J. G.

Weidemann, A.

Weidemann, A. D.

Woods, S.

Yitzhaky, Y.

Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
[CrossRef]

Zege, E. P.

Appl. Opt. (6)

Geophys. Astrophys. Fluid Dyn. (1)

T. R. Osborn and C. S. Cox, “Oceanic fine structure,” Geophys. Astrophys. Fluid Dyn.3(1), 321–345 (1972).
[CrossRef]

Geophys. Res. Lett. (1)

T. Ross and R. Lueck, “Sound scattering from oceanic turbulence,” Geophys. Res. Lett.30(6), 1343 (2003).
[CrossRef]

J. Fluid Mech. (1)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulence fluid,” J. Fluid Mech.5, 113–133 (1959).
[CrossRef]

J. Geophys. Res. (1)

L. Goodman, “Acoustic scattering from ocean microstructure,” J. Geophys. Res.95(C7), 11557–11573 (1990).
[CrossRef]

Limnol. Oceanogr. (1)

S. A. Thorpe and J. M. Brubaker, “Observations of sound reflection by temperature microstructure,” Limnol. Oceanogr.28(4), 601–613 (1983).
[CrossRef]

Opt. Eng. (3)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng.32(9), 2185 (1993).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, and N. Kopeika, “Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function,” Opt. Eng.33, 44–53 (1994).
[CrossRef]

Y. Yitzhaky, I. Dror, and N. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions,” Opt. Eng.36(11), 3064–3072 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (9)

W. Hou and A. Weidemann, “Diver visibility: why one can not see as far?” in SPIE Proc. 7317, W. Hou, ed. (SPIE, Orlando, FL, USA, 2009).

W. H. Wells, “Theory of small angle scattering,” in AGARD Lec. Series No. 61(NATO, 1973).

G. D. Gilbert and R. C. Honey, “Optical turbulence in the sea,” in Underwater photo-optical instrumentation applications. (SPIE, 1972), pp. 49–55.

R. C. Honey and G. P. Sorenson, “Optical absorption and turbulenced induced narrow angle forward scatter in the sea,” in AGARD Conference Proceeding No.77 on Electromagnetics of the sea(1970).

W. Hou, A. Weidemann, D. Gray, and G. R. Fournier, “Imagery-derived modulation transfer function and its applications for underwater imaging,” in Applications of Digital Image Processing XXX, A. G. Tescher, ed. (SPIE, San Diego, 2007), pp. 6696221–6696228.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

S. Woods, W. Hou, W. Goode, E. Jarosz, and A. Weidemann, “Quantifying turbulence microstructure for improvement of underwater imaging,” in Ocean Sensing and Monitoring, SPIE Defense and Security Symposium, W. Hou, ed. (SPIE, Orlando, FL, 2011).

S. W. Effler, A. R. Rrestigiacomo, and D. M. O'Donnel, “Water quality and limonological monitoring for Skaneateles Lake: Field Year 2007,” (Upstate Freshwater Institute, 2008), p. 57.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(left, a) Bathymetric sketch of Skaneateles Lake showing the approximate location of the two stations: S1 (red circle) near the center of the lake, and S2 (blue triangle) in the northern end of the lake. Map from http://www.ourlake.org/html/skaneateles_lake1.html. (right, b) Temperature profiles corresponding to the dissipation profiles shown in Fig. 2-6 for deployments on July 27 day (solid red), July 28 day (solid green), July 29 day (solid blue), July 29 night (dashed purple), July 30 day (solid black). All profiles are from S1 except for the July 29th daytime deployment, which is from S2.

Fig. 2
Fig. 2

VMP profiles of TKED (ε) and TD rates (χ), optical turbulence intensity (Sn) and acoustical scattering cross section (σ) on July 29, 2010 (Profile#62, left), on July 30, 2010 (Profile#112, right) . The units for ε is m2s−3, while χ is °C2s−1. Sn and σ are not calibrated.

Fig. 3
Fig. 3

VMP profiles of TKED (ε) and TD rates (χ), optical turbulence intensity (Sn) and acoustical scattering cross section (σ) on July 30, 2010 (Profile#117, left), on July 30, 2010 (Profile#126, right) . The units for ε are m2s−3, while χ is C2s−1. Sn and σ are not calibrated.

Fig. 4
Fig. 4

Optical turbulence intensity (Sn) versus acoustical scattering cross section (σ) for July 29, 2010 (Profile#62, R2 = 0.99, left), for July 30, 2010 (Profile#112, R2 = 0.89, right)

Fig. 6
Fig. 6

Optical turbulence intensity (Sn) versus acoustical scattering cross section (σ), for July 28-30, 2010 (Profile#43, 75, 112, 126, R2 = 0.91).

Fig. 5
Fig. 5

Optical turbulence intensity (Sn) versus acoustical scattering cross section (σ), for July 30, 2010 (Profile#126, R2 = 0.93, left), for July 30, 2010 (Profile#117, R2 = 0.86, right)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

OTF (ψ,r) total =OTF (ψ,r) path OTF (ψ,r) par OTF (ψ,r) tur =( 1 1+D )exp[ cr+br( 1 e 2π θ 0 ψ 2π θ 0 ψ ) ]exp( S n ψ 5/3 r ) =( 1 1+D )exp{ [ cb( 1 e 2π θ 0 ψ 2π θ 0 ψ )+ S n ψ 5/3 ]r }
S n =3.44 ( λ ¯ / R 0 ) 5/3 =1736 K 3 λ ¯ 1/3
σ= C 1 k z 3 2 d Φ T ( k z ) d k z .
Φ ( k z )= C 2 [ N 2 χ ε 1 k z 3 + B 1 χ ε 1/3 k z 5/3 +χ ( ε ν ) 1/2 k z 1 ]exp[q ( k z k B ) 2 ],
k B =( 1 2π ) ( ε ν D T 2 ) 0.25
ε= 15 2 ν k 1 k 2 φ( k )dk
χ T =6 D T ( dT' dz ) 2 ¯

Metrics